Geophysical surveys

, Volume 4, Issue 3, pp 189–232 | Cite as

Finite strain theories and comparisons with seismological data

  • F. D. Stacey
  • B. J. Brennan
  • R. D. Irvine


All the finite strain equations that we are aware of that are worth considering in connection with the interior of the Earth are given, with the assumptions on which they are based and corresponding relationships for incompressibility and its pressure derivatives in terms of density. In several cases, equations which have been presented as new or independent are shown to be particular examples of more general equations that are already familiar. Relationships for deriving finite strain equations from atomic potential functions or vice versa are given and, in particular it is pointed out that the Birch-Murnaghan formulation implies a sum of power law potentials with even powers. All the equations that survive simple plausibility tests are fitted to the lower mantle and outer core data for the PEM earth model. For this purpose the model data are extrapolated to zero temperature, using the Mie-Grüneisen equation to subtract the thermal pressure (at fixed density) and the pressure derivative of this equation to substract the thermal component of incompressibility. Fitting of finite strain equations to such zero temperature data is less ambiguous than fitting raw earth model data and leads immediately to estimates of the low temperature zero pressure parameters of earth materials. On this basis, using the best fitting equations and constraining core temperature to give an extrapolated incompressibilityK0=1.6×1011Pa, compatible with a plausible iron alloy, the following numerical data are obtained: Core-mantle boundary temperature 3770 K Zero pressure, zero temperature densities: lower mantle 4190 kg m−3 outer core (solidified) 7500 kg m−3 Zero pressure, zero temperature incompressibility of the lower mantle 2.36×1011Pa

However, an inconsistency is apparent betweenP(ϱ) andK(ϱ) data, indicating that, even in the PEM model, in which the lower mantle is represented by a single set of parameters, it is not perfectly homogeneous with respect to composition and phase.


Incompressibility Lower Mantle Outer Core Pressure Derivative Thermal Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., and Stegun, I. A.: 1965,Handbook of Mathematical Functions, Dover, New York, 1046 pp.Google Scholar
  2. Anderson, D. L.: 1967, ‘A Seismic Equation of State’,Geophys. J., R. Astron. Soc.,13, 9–30.Google Scholar
  3. Anderson, O. L.: 1968, ‘On the Use of Ultrasonic and Shock Wave Data to Estimate Compressions at Extremely High Pressures’,Phys. Earth Planet. Int. 1, 169–176.Google Scholar
  4. Anderson, O. L.: 1970, ‘Elastic Constants of the Central Force Model for Three Cubic Structures: Pressure Derivatives and Equations of State.J. Geophys. Res. 75, 2719–2740.Google Scholar
  5. Anderson, O. L.: 1978, ‘An Experimentalists Equation of State: Avoiding the Grüneisen Parameter Quandry’,EOS 59, 373.Google Scholar
  6. Anderson, O. L.: 1979a, ‘Evidence Supporting the Law γϱ=Constant for the Grüneisen Parameter of the Earth's Lower Mantle’,J. Geophys. Res. 84, 3537–3542.Google Scholar
  7. Anderson, O.L.: 1979b, ‘The Hildebrand Equation of State Applied to Minerals Relevant to Geophysics’,Phys. Chem. Minerals 5, 33–51.Google Scholar
  8. Anderson, O. L., and Nafe, J. E.: 1965, ‘The Bulk Modulus-Volume Relationship for Oxide Compounds and Related Geophysical Problems’,J. Geophys. Res. 70, 3951–3963.Google Scholar
  9. Bardeen, J.: 1938, ‘Compressibilities of the Alkali Metals’,J. Chem. Phys. 6, 372–378.Google Scholar
  10. Birch, F.: 1952, ‘Elasticity and Constitution of the Earth's Interior’,J. Geophys. Res. 57, 227–286.Google Scholar
  11. Birch, F.: 1961, ‘The Velocity of Compressional Waves in Rocks to 10 Kilobars’, 2,J. Geophys. Res. 66, 2199–2224.Google Scholar
  12. Brennan, B. J., and Stacey, F. D.: 1979, ‘A Thermodynamically Based Equation of State for the Lower Mantle’,J. Geophys. Res. 84, 5535–5539.Google Scholar
  13. Bukowinski, M. S. T.: 1976, ‘On the Electronic Structure of Iron at Core Pressures’,Phys. Earth Planet. Int. 13, 57–66.Google Scholar
  14. Bullard, E. C., and Gellman, H.: 1954, ‘Homogeneous Dynamos and Terrestrial Magnetism’,Phil. Trans. Roy. Soc. A 247, 213–278.Google Scholar
  15. Butler, R., and Anderson, D. L.: 1978, ‘Equation of State Fits to the Lower Mantle and Outer Core’,Phys. Earth Planet. Int. 17, 147–162.Google Scholar
  16. Davies, G. F., and Dziewonski, A. M.: 1975, ‘Homogeneity and Constitution of the Earth's Lower Mantle and Outer Core’,Phys. Earth Planet. Int. 10, 336–343.Google Scholar
  17. Davis, L. A., and Gordon, R. B.: 1967, ‘Compression of Mercury at High Pressure’,J. Chem. Phys. 46, 2650–2660.Google Scholar
  18. Dziewonski, A. M., Hales, A. L., and Lapwood, E. R.: 1975, ‘Parametrically Simple Earth Models Cosistent with Geophysical Data’,Phys. Earth Planet. Int. 10, 12–48.Google Scholar
  19. Grover, R., Getting, I. C., and Kennedy, G. C.: 1973, ‘Simple Compressibility Relation for Solids’,Phys. Rev. B,7, 567–571.Google Scholar
  20. Gschneider, K. A.: 1964, ‘Physical Properties and Inter-Relationships of Metallic and Semi-Metallic Elements’,Solid State Physics 16, 275–426.Google Scholar
  21. Hayward, A. T. J.: 1967, ‘Compressibility Equations for Liquids: A Comparative Study’,Brit. J. Appl. Phys. 18, 965–977.Google Scholar
  22. Irvine, R. D., and Stacey, F. D.: 1975, ‘Pressure Dependence of the Thermal Grüneisen Parameter, with Application to the Earth's Lower Mantle and Outer Core’,Phys. Earth Planet. Int. 11, 157–165.Google Scholar
  23. Jordan, T. H., and Anderson, D. L.: 1973, ‘Earth Structure from Free Oscillations and Travel Times’,Geophys. J., R. Astron. Soc. 35, 362–365.Google Scholar
  24. Keane, A.: 1954, ‘An Investigation of Finite Strain in an Isotropic Material Subjected to Hydrostatic Pressure and Its Seismological Applications’,Australian J. Phys.,7, 323–333.Google Scholar
  25. Kelvin, Lord: 1902, ‘A New Specifying Method for Stress and Strain in an Elastic Solid’,Phil. Mag. (Series 6),3 95–97 and 444–448.Google Scholar
  26. Love, A. E. H.: 1927,A Treatise on the Mathematical Theory of Elasticity, fourth ed., Cambridge University Press, Cambridge, 643 pp.Google Scholar
  27. MacDonald, J. R.: 1966, ‘Some Simple Isothermal Equations of State’,Revs. Mod. Phys. 38, 669–679.Google Scholar
  28. MacDonald, J. R.: 1969, ‘Review of Some Experimental and Analytical Equations of State’.Revs. Mod. Phys. 41, 316–349.Google Scholar
  29. Mao, N.-H.: 1970, ‘Empirical Equation of State for High Compression’,J Geophys. Res. 75, 7508–7512.Google Scholar
  30. Morse, P. M.: 1929, ‘Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels’,Phys. Rev. 34, 57–64.Google Scholar
  31. Murnaghan, F. D.: 1951,Finite Deformation of an Elastic Solid, Wiley, New York, 140 pp.Google Scholar
  32. Pack, D. C., Evans, W. M., and James, H. J.: 1948, ‘The Propagation of Shock Waves in Steel and Lead’,Proc. Phys. Soc. 60, 1–8.Google Scholar
  33. Pekeris, C. L., and Accad, Y.: 1972, ‘Dynamics of the Liquid Core of the Earth’,Phil. Trans. Roy. Soc. A,273, 237–260.Google Scholar
  34. Ringwood, A. E.: 1970, ‘Phase Transformations and the Constitution of the Mantle’,Phys. Earth Planet. Int. 3, 109–155.Google Scholar
  35. Rydberg, R.: 1932, ‘Graphische Darstellung Einiger Bandspektroskopischer Ergebnisse’,Z. Phys. 73, 376–385.Google Scholar
  36. Sammis, C. G., Anderson, D. L., and Jordan, T.: 1970, ‘A Note on the Application of Isotropic Finite Strain Theory to Ultrasonic and Seismological Data’,J. Geophys. Res. 75, 4478–4480.Google Scholar
  37. Shankland, T. J., and Chung, D. H.: 1974, ‘General Relationships Among Sound Speeds. II. Theory and Discussion’,Phys. Earth Planet. Int. 8, 121–129.Google Scholar
  38. Simmons, G.: 1964, ‘Velocity of Compressional Waves in Various Minerals at Pressures to 10 Kilobars’,J. Geophys. Res. 69, 1117–1121.Google Scholar
  39. Slater, J. C.: 1939,Introduction to Chemical Physics, McGraw-Hill, New York, 521 pp.Google Scholar
  40. Stacey, F. D.: 1977a,Physics of the Earth, second ed., Wiley, New York, 414 pp.Google Scholar
  41. Stacey, F. D.: 1977b, ‘A Thermal Model of the Earth’,Phys. Earth Planet. Int. 15, 341–348.Google Scholar
  42. Stacey, F. D.: 1977c, ‘Applications of Thermodynamics to Fundamental Earth Physics’,Geophys. Surveys 3, 175–204.Google Scholar
  43. Stacey, F. D.:, and Irvine, R. D.: 1977a, ‘Theory of Melting: Thermodynamic Basis of Lindemann's Law’Australian J. Phys. 30, 631–640.Google Scholar
  44. Stacey, F. D., and Irvine, R. D.: 1977b, ‘A Simple Dislocation Theory of Melting’,Australian J. Phys. 30, 641–646.Google Scholar
  45. Stevenson, D. J.: 1979, ‘Applications of Liquid State Physics to the Earth's Core’,Phys. Earth Planet. Int. 22, 42–52.Google Scholar
  46. Thomsen, L.: 1971, ‘Equations of State and the Interior of the Earth’. In J. Coulomb and M. Caputo (eds.),Mantle and Core in Planetary Physics (Proc. International School of Physics ‘Enrico Fermi’), New York: Academic Press, pp. 94–133.Google Scholar
  47. Ullmann, W. and Pan'kov, V. L.: 1980, ‘Application of the Equation of State to the Earth's Lower Mantle’,Phys. Earth Plant. Inter. 22, 194–203.Google Scholar
  48. Vashchenko, V. Ya., and Zubarev, V. N.: 1963, ‘Concerning the Grüneisen Constant’,Sov. Physics Solid State 5, 653–655.Google Scholar
  49. Walzer, U., Ullmann, W., and Pan'kov, V. L.: 1979, ‘Comparison of Some Equation of State Theories by Using Experimental High Compression Data’,Phys. Earth Planet. Int. 18, 1–12.Google Scholar
  50. Zharkov, V. N., and Kalinin, V. A.: 1971,Equations of State for Solids at High Pressures and Temperatures (Translated from Russian). Consultants Bureau, New York, 257 pp.Google Scholar

Copyright information

© D. Reidel Publishing Company 1981

Authors and Affiliations

  • F. D. Stacey
    • 1
  • B. J. Brennan
    • 1
  • R. D. Irvine
    • 1
  1. 1.Physics DepartmentUniversity of QueenslandBrisbaneAustralia

Personalised recommendations