Applied Mathematics and Optimization

, Volume 12, Issue 1, pp 191–202 | Cite as

A Strong Maximum Principle for some quasilinear elliptic equations

  • J. L. Vázquez
Article

Abstract

In its simplest form the Strong Maximum Principle says that a nonnegative superharmonic continuous function in a domain Ω ⊂ ℝ n ,n ⩾ 1, is in fact positive everywhere. Here we prove that the same conclusion is true for the weak solutions of − Δu + β(u) = f withβ a nondecreasing function ℝ → ℝ,β(0)=0, andf⩾0 a.e. in Ω if and only if the integral∫(β(s)s)−1/2ds diverges ats=0+. We extend the result to more general equations, in particular to − Δ p u + β(u) =f where Δ p (u) = div(|Du|p-2Du), 1 <p < ∞. Our main result characterizes the nonexistence of a dead core in some reaction-diffusion systems.

Keywords

Continuous Function Weak Solution System Theory Mathematical Method Simple Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aris R (1975) The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Bandle C, Sperb RP, Stakgold I (in press) Diffusion-reaction with monotone kynetics. J Nonlinear AnalysisGoogle Scholar
  3. 3.
    Bénilan P (1978) Opérateurs accrétifs et semigroupes dansL p (1⩽p⩽∞). In: Fujita H (ed) Japan-France Seminar 1976. Japan Society for the Promotion of Science: TokyoGoogle Scholar
  4. 4.
    Bénilan P, Brézis H, Crandall MG (1975) A semilinear equation inL 1(ℝn). Ann Scuola Norm Sup Pisa 4:523–555Google Scholar
  5. 5.
    Bertsch M, Kersner R, Peletier LA (in press) Positivity versus localization in degenerate diffusion equationsGoogle Scholar
  6. 6.
    Brézis H, Véron L (1980) Removable singularities of some nonlinear elliptic equations. Arch Rat Mech Anal75 1–6Google Scholar
  7. 7.
    Díaz JI, Hernández J (to appear) On the existence of a free boundary for a class of reactiondiffusion systems. Madison Res Center TS Report 2330. SIAM J Math AnalGoogle Scholar
  8. 8.
    Díaz JI, Herrero MA (1981) Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems. Proc Royal Soc Ed 89A:249–258Google Scholar
  9. 9.
    di Benedetto E (1983)C 1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis 7:827–850Google Scholar
  10. 10.
    Friedman A, Phillips D (in press) The free boundary of a semilinear elliptic equation. Tr Amer Math SocGoogle Scholar
  11. 11.
    Gilbarg D, Trudinger NS (1977) Elliptic Differential Equations of Second Order. Springer Verlag, BerlinGoogle Scholar
  12. 12.
    Hopf E (1927) Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitz Ber Preuss Akad Wissensch, Berlin. Math Phys kl 19Google Scholar
  13. 13.
    Kato T (1972) Schrödinger operators with singular potentials. Israel J Math 13:135–148Google Scholar
  14. 14.
    Tolksdorf P (1984) Regularity for a more general class of quasilinear elliptic equations. J Diff Equations 51:126–150Google Scholar
  15. 15.
    Vázquez JL, Véron L (in press) Isolated singularities of some semilinear elliptic equations. J Diff EqGoogle Scholar
  16. 16.
    Vázquez JL, Véron L (in press) Singularities of elliptic equations with an exponential nonlinearity. Mathematische AnnalenGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • J. L. Vázquez
    • 1
  1. 1.División de MatemáticasUniversidad AutónomaMadrid-34Spain

Personalised recommendations