Mathematische Annalen

, Volume 50, Issue 2–3, pp 225–240 | Cite as

Concerning Abelian-regular transitive triple systems

  • Eliakim Hastings Moore
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. *).
    Netto, Zur Theorie der Tripelsysteme (Mathematische Annalen, vol. 42, pp. 143–152, 1893).CrossRefGoogle Scholar
  2. **).
    Heffter,Ueber Tripelsysteme (Mathem. Ann., vol. 49, pp. 101–112, 1897).Google Scholar
  3. *).
    Weber, Algebra, vol. 2, p. 39 fg.Google Scholar
  4. **).
    I use thegeneral matrix notation for configurations introduced in I (The General Tactical Configuration: Definition and Notation), of my paperTactical Memoranda I—III (American Journal of Mathematics, vol. 18, pp. 264–303, 1896).Google Scholar
  5. *).
    Cf.Mathem. Annalen, vol. 43, p. 272.Google Scholar
  6. **).
    Concerning Triple Systems, (Mathem. Annalen), vol. 43, pp. 271–285, 1893).Google Scholar
  7. *).
    Galois,Sur la théorie des nombres (Bulletin des Sciences Mathématiques de M. Ferussac, vol. 13, p. 428, 1830; reprinted,Journal de Mathematiques pures et appliquées, vol. 11, pp. 398–407, 1846).Google Scholar
  8. *).
    Serret,Algèbre supérieure, fifth edition, vol. 2, pp. 122–189.Google Scholar
  9. *).
    Jordan,Traité des substitutions, pp., 14–18.Google Scholar
  10. *).
    Moore,A doubly infinite system of simple groups (Mathematical Papers read at the... Congres...Chicago 1893, pp. 208–242, 1896; in abstract,Bulletin of the New York Mathematical Society, vol. 3, Dec., 1893. § 3 is an abstract ormul ation of the Galois field theory).Google Scholar
  11. **).
    Dirichlet-Dedekind,Zahlentheorie, fourth edition, § 128.Google Scholar

Copyright information

© Springer-Verlag 1898

Authors and Affiliations

  • Eliakim Hastings Moore
    • 1
  1. 1.Chicago

Personalised recommendations