Advertisement

Mathematische Annalen

, Volume 50, Issue 2–3, pp 225–240 | Cite as

Concerning Abelian-regular transitive triple systems

  • Eliakim Hastings Moore
Article

Keywords

Triple System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. *).
    Netto, Zur Theorie der Tripelsysteme (Mathematische Annalen, vol. 42, pp. 143–152, 1893).CrossRefGoogle Scholar
  2. **).
    Heffter,Ueber Tripelsysteme (Mathem. Ann., vol. 49, pp. 101–112, 1897).Google Scholar
  3. *).
    Weber, Algebra, vol. 2, p. 39 fg.Google Scholar
  4. **).
    I use thegeneral matrix notation for configurations introduced in I (The General Tactical Configuration: Definition and Notation), of my paperTactical Memoranda I—III (American Journal of Mathematics, vol. 18, pp. 264–303, 1896).Google Scholar
  5. *).
    Cf.Mathem. Annalen, vol. 43, p. 272.Google Scholar
  6. **).
    Concerning Triple Systems, (Mathem. Annalen), vol. 43, pp. 271–285, 1893).Google Scholar
  7. *).
    Galois,Sur la théorie des nombres (Bulletin des Sciences Mathématiques de M. Ferussac, vol. 13, p. 428, 1830; reprinted,Journal de Mathematiques pures et appliquées, vol. 11, pp. 398–407, 1846).Google Scholar
  8. *).
    Serret,Algèbre supérieure, fifth edition, vol. 2, pp. 122–189.Google Scholar
  9. *).
    Jordan,Traité des substitutions, pp., 14–18.Google Scholar
  10. *).
    Moore,A doubly infinite system of simple groups (Mathematical Papers read at the... Congres...Chicago 1893, pp. 208–242, 1896; in abstract,Bulletin of the New York Mathematical Society, vol. 3, Dec., 1893. § 3 is an abstract ormul ation of the Galois field theory).Google Scholar
  11. **).
    Dirichlet-Dedekind,Zahlentheorie, fourth edition, § 128.Google Scholar

Copyright information

© Springer-Verlag 1898

Authors and Affiliations

  • Eliakim Hastings Moore
    • 1
  1. 1.Chicago

Personalised recommendations