Applied Mathematics and Optimization

, Volume 22, Issue 1, pp 229–240 | Cite as

The optimal control of diffusions

  • Robert J. Elliott


Using a differentiation result of Blagovescenskii and Freidlin calculations of Bensoussan are simplified and the adjoint process identified in a stochastic control problem in which the control enters both the drift and diffusion coefficients. A martingale representation result of Elliott and Kohlmann is then used to obtain the integrand in a stochastic integral, and explicit forward and backward equations satisfied by the adjoint process are derived.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Baras, R. J. Elliott and M. Kohlmann, The partially observed stochastic minimum principle. SIAM J. Control Optim., 27 (1989), 1279–1292.Google Scholar
  2. 2.
    A. Bensoussan, Lectures on Stochastic Control. Lecture Notes in Mathematics, Vol. 972. Springer-Verlag, Berlin, 1982.Google Scholar
  3. 3.
    J. N. Blagovescenskii and M. I. Freidlin, Some properties of diffusion processes depending on a parameter. Dokl. Akad. Nauk. SSSR, 138 (1961), Soviet Math. Dokl., 2 (1961), 633–636.Google Scholar
  4. 4.
    J. M. Bismut, Theorie probabiliste du Contrôle des Diffusions. Memoirs of the American Mathematical Society, Vol. 167, AMS, Providence, RI, 1976.Google Scholar
  5. 5.
    J. M. Bismut, An introductory approach to duality in optimal stochastic control. SIAM Rev., 20 (1978), 62–78.Google Scholar
  6. 6.
    M. H. A. Davis and M. P. Spathopoulos, On the minimum principle for controlled diffusions on manifolds. SIAM J. Control Optim., 27 (1989), 1092–1107.Google Scholar
  7. 7.
    M. H. A. Davis and P. P. Varaiya, Dynamic programming conditions for partially observed stochastic systems. SIAM J. Control Optim., 11 (1973), 226–261.Google Scholar
  8. 8.
    R. J. Elliott, Stochastic Calculus and Applications. Applications of Mathematics, Vol. 18. Springer-Verlag, New York, 1982.Google Scholar
  9. 9.
    R. J. Elliott and M. Kohlmann, A short proof of a martingale representation result. Statist. Probab. Lett., 6 (1988), 327–329.Google Scholar
  10. 10.
    R. J. Elliott and M. Kohlmann, Integration by parts, homogeneous chaos expansions and smooth densities. Ann. Probab., 17 (1989), 194–207.Google Scholar
  11. 11.
    R. J. Elliott and M. Kohlmann, The variational principle for optimal control of diffusions with partial information. Systems Control Lett., 12 (1989), 63–69.Google Scholar
  12. 12.
    R. J. Elliott and M. Kohlmann, The adjoint process in stochastic optimal control. Lecture Notes in Control and Information Sciences, Vol. 126. Springer-Verlag, Berlin, 1989, pp. 115–127.Google Scholar
  13. 13.
    U. G. Haussmann, On the adjoint process for optimal control of diffusion processes. SIAM Jr. Control Optim., 19 (1981), 221–243 and 710.Google Scholar
  14. 14.
    U. G. Haussmann, Extremal Controls for Completely Observable Diffusions. Lecture Notes in Control and Information Sciences, Vol. 42. Springer-Verlag, Berlin, 1982, pp. 149–160.Google Scholar
  15. 15.
    U. G. Haussmann, A Stochastic Minimum Principle for Optimal Control of Diffusions. Pitman/Longman Research Notes in Mathematics, Vol. 151. Longman, Essex, 1986.Google Scholar
  16. 16.
    H. Kushner, Necessary conditions for continuous parameter stochastic optimization problems. SIAM Jr. Control Optim., 10 (1972), 550–565.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Robert J. Elliott
    • 1
  1. 1.Department of Statistics and Applied ProbabilityUniversity of AlbertaEdmontonCanada

Personalised recommendations