Plasma Chemistry and Plasma Processing

, Volume 10, Issue 3, pp 473–491 | Cite as

Nonequilibrium modeling of low-pressure argon plasma jets; Part I: Laminar flow

  • C. H. Chang
  • E. Pfender
Article

Abstract

This paper presents a modeling attempt related to low-pressure plasma spraying processes which find increasing applications for materials processing. After a review of the various models for ionization and recombination processes, a two-temperature model for argon plasmas in chemical (ionization) nonequilibrium is established using finite rate chemistry. Results of sample calculations manifest departures from kinetic as well as chemical equilibrium, demonstrating that the conventional models based on the LTE (local thermodynamic equilibrium) assumption cannot provide proper prediction for low-pressure plasma jets.

Key words

Low-pressure ionization (chemical) nonequilibrium twotemperature plasma jets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mitchner and C. H. Kruger,Partially Ionized Gases, Wiley, New York (1973).Google Scholar
  2. 2.
    K. Dakeda, K. Hayashi, and T. Ohashi, “Fluid flow and temperature fields of plasma jet in low-pressure spray processes,” Proc. of ISPC-7, Vol. 3 (1985), p. 848.Google Scholar
  3. 3.
    J. N. Le Toulouzan, G. Gouesbet, R. Darrigo, and A. Berlemont,AIAA J. 25, 30 (1987).Google Scholar
  4. 4.
    D. Wei, D. Apelian, and B. Farouk, “A critical analysis of proposed plasma jet models to predict temperature and velocity profiles,” MRS Spring Meeting, Paper K.1.6 (1987).Google Scholar
  5. 5.
    D. Apelian, D. Wei, and M. Paliwal,Thin Solid Films 118, 395 (1984).Google Scholar
  6. 6.
    T. Honda and A. Kanzawa,AIAA J. 15, 1353 (1977).Google Scholar
  7. 7.
    G. A. Luk'yanov, V. V. Nazarov, and V. V. Sakhin,Sov. Phys.-Tech. Phys. 23, 744 (1978).Google Scholar
  8. 8.
    H.-D. Steffens and K.-H. Busse, “Measurements of particle and plasma velocity in a low-pressure plasma jet,” Proc. of ISPC-7, Vol. 2 (1985), p.710.Google Scholar
  9. 9.
    G. Frind, C. P. Goody, and L. E. Prescott, “Measurement of particle velocity in two low-pressure plasma jets,” Proc. of ISPC-6, Vol. 1 (1983), p. 120.Google Scholar
  10. 10.
    Y. Arata, A. Kobayashi, and Y. Habara,Jpn. J. Appl. Phys. Part 1, 1697 (1986).Google Scholar
  11. 11.
    R. Hidaka, T. Ooki, K. Takeda, K. Konda, H. Kanda, K. Chino, Y. Matsuda, K. Muraoka, and M. Akazaki,Jpn. J. Appl. Phys. 26, L1724 (1987).Google Scholar
  12. 12.
    J. W. Bond,Phys. Rev. 105, 1683 (1957).Google Scholar
  13. 13.
    H. Petschek and S. Byron,Ann. Phys. 1, 270 (1957).Google Scholar
  14. 14.
    K. N. C. Bray, “Electron-ion recombination in argon flowing through a supersonic nozzle,” inThe High-Temperature Aspects of Hypersonic Flow, W. C. Nelson, ed., Pergamon, New York (1962).Google Scholar
  15. 15.
    N. D'Angelo,Phys. Rev. 121, 505 (1961).Google Scholar
  16. 16.
    D. R. Bates and A. E. Kingston,Nature (London) 189, 652 (1961).Google Scholar
  17. 17.
    E. Hinnov and J. G. Hirschberg,Phys. Rev. 125, 795 (1962).Google Scholar
  18. 18.
    S. Byron, R. C. Stabler, and P. I. Bortz,Phys. Rev. Lett. 8, 376 (1962).Google Scholar
  19. 19.
    D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, “Recombination between electrons and atomic ions. I. Optically thin plasmas,”Proc. R. Soc. London A267, 297 (1962).Google Scholar
  20. 20.
    D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, “Recombination between electrons and atomic Ions. II. Optically thick plasmas,”Proc. R. Soc. London A270, 155 (1962).Google Scholar
  21. 21.
    M. Gryzinski,Phys. Rev. 115, 374 (1959).Google Scholar
  22. 22.
    K. E. Harwell and R. G. Jahn,Phys. Fluids 7, 214 (1964);7, 1554 (1964).Google Scholar
  23. 23.
    E. J. Morgan and R. D. Morrison,Phys. Fluids 8, 1608 (1965).Google Scholar
  24. 24.
    M. Hoffert and H. Lien,Phys. Fluids 10, 1769 (1967).Google Scholar
  25. 25.
    C. H. Kruger,Phys. Fluids 13, 1737 (1970).Google Scholar
  26. 26.
    G. J. Schultz and R. E. Fox,Phys. Rev. 106, 1179 (1957).Google Scholar
  27. 27.
    L. S. Frost and A. V. Phelps,Phys. Rev. A136, 1538 (1964).Google Scholar
  28. 28.
    J. F. Shaw, M. Mitchner, and C. H. Kruger,Phys. Fluids 13, 325 (1970).Google Scholar
  29. 29.
    J. F. Shaw, M. Mitchner, and C. H. Kruger,Phys. Fluids 13, 339 (1970).Google Scholar
  30. 30.
    C. G. Braun and J. A. Kunc,Phys. Fluids 30, 499 (1987).Google Scholar
  31. 31.
    T. Holstein,Phys. Rev. 72, 1212 (1947).CrossRefGoogle Scholar
  32. 32.
    T. Holstein,Phys. Rev. 83, 1159 (1951).Google Scholar
  33. 33.
    J. A. Kunc,Phys. Fluids 27, 2859 (1984).Google Scholar
  34. 34.
    D. A. Erwin and J. A. Kunc,Phys. Fluids 28, 3349 (1985).Google Scholar
  35. 35.
    C. J. Chen,Phys. Rev. 177, 245 (1969).Google Scholar
  36. 36.
    H. N. Olsen,Phys. Fluids 2, 614 (1959).Google Scholar
  37. 37.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena, Wiley, New York (1960).Google Scholar
  38. 38.
    M. Y. Jafirin,Phys. Fluids 8, 606 (1965).Google Scholar
  39. 39.
    D. Kannapan and T. K. Bose,Phys. Fluids 20, 1668 (1977).Google Scholar
  40. 40.
    E. J. Miller and S. I. Sandler,Phys. Fluids 16, 491 (1973).Google Scholar
  41. 41.
    U. Daybelge, “Transport properties of two-temperature partially ionized plasmas,” Ph.D. Thesis, Stanford University (1968).Google Scholar
  42. 42.
    R. S. Devoto,Phys. Fluids 16, 616 (1973).Google Scholar
  43. 43.
    U. Daybelge,J. Appl. Phys. 41, 2130 (1970).Google Scholar
  44. 44.
    R. S. Devoto,Phys. Fluids 10, 2105 (1967).Google Scholar
  45. 45.
    C. H. Kruger and M. Mitchner,Phys. Fluids 10, 1953 (1967).Google Scholar
  46. 46.
    R. M. Chmieleski and J. H. Ferziger,Phys. Fluids 10, 364 (1967).Google Scholar
  47. 47.
    Kun-Chen Hsu, “A self-consistent model for the high-intensity free-burning argon arc,” Ph.D. Thesis, University of Minnesota (1982).Google Scholar
  48. 48.
    D. B. Spalding,genmix hA General Computer Program for Two-Dimensional Parabolic Phenomena, Pergamon, Oxford (1977).Google Scholar
  49. 49.
    Y. C. Lee, “Modeling work in thermal plasma processing,” Ph.D. Thesis, University of Minnesota (1984).Google Scholar
  50. 50.
    I. K. Jennions, A. S. C. Ma, and D. B. Spalding, “A prediction for 2-dimensional, steady, supersonic flows (thegenmix h computer program),” Imperial College Technical Report HTS/77/24 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • C. H. Chang
    • 1
  • E. Pfender
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolis
  2. 2.Idaho National Engineering LaboratoryEG&G Idaho, Inc.USA

Personalised recommendations