Plasma Chemistry and Plasma Processing

, Volume 13, Issue 1, pp 141–167 | Cite as

Pulverized coal plasma gasification

  • R. A. Kalinenko
  • A. P. Kuznetsov
  • A. A. Levitsky
  • V. E. Messerle
  • Yu. A. Mirokhin
  • L. S. Polak
  • Z. B. Sakipov
  • A. B. Ustimenko


A number of experiments on the plasma-vapor gasification of brown coals of three types have been carried out using an experimental plant with an electric-arc reactor of the combined type. On the basis of the material and heat balances, process parameters have been obtained: the degree of carbon gasification (ζc), the level of sulfur conversion into the gas phase (ζs), the synthesis gas concentration (CO+Hz) in the gaseous products, and the specific power consumption for the gasification process. The degree of gasification was 90.5-95.0%, the concentration of the synthesis gas amounted to 84.7–85.7%, and the level of sulfur conversion into the gas phase was 94.3–96.7%. Numerical study of the process of plasma gasification of coals was carried out using a mathematical model of motion, heating, and gasification of polydisperse coal particles in an electric-arc reactor of the combined type with an internal heat source (arc). The initial conditions for a conjugate system of nonlinear differential equations of the gas dynamics and kinetics of a pulverized coal stream interacting with the electric arc and oxidizer (water vapor) agree with the initial conditions of the experiments. The computation results satisfactorily correlate with the experimental data. The mathematical model can be used for the determination of reagent residence time and geometrical dimensions of the plasma reactor for the gasification of coals.

Key words

Plasma gasification lower-grade coals electric-arc reactor mathematical model of plasma gasification of coals 



volume concentration of components (kmol m−3)


longitudinal coordinate (m)


source members, determined by variation of the ith component due to chemical reactions in unit volume in unit time (kmol m−3s−1)


velocity (m s−1)


ash mass in one particle (kg)


particle drag coefficient




particle radius (m)


particle diameter (m)


density (kg m−3)


heat capacity of components (J molt− K−1)


thermal effect of reaction (J kmol−1)


activation energy of reaction


volume concentration of particles of thelth fraction (m−3)


temperature (K)


emissivity factor of coal particles


5.67 × 10−8, blackbody emissivity coefficient (W m−2 K−4)


pressure (Pa)


reactor cross section (m2)


reactor diameter (m)


reactor volume (m3)


reactor length (m)


friction force on the wall (N)


friction coefficient


residence time (s)


Nusselt number


Reynolds number


Prandtl number


thermal conductivity of gas (J m s−1 K−1)


8.3 × 103, universal gas constant (J kmol K−1)


molecular mass of component (kg kmol−1)


dynamic viscosity coefficient of gas (kg m−1 s−1)


thermal efficiency of plasma reactor


specific heat flow from arc (W m−3)


heat supplied in vapor at T = 405 K (W)


heat loss to wall (W)


heat loss in the gas and slag separator chamber (W)


heat loss in the synthesis gas oxidation chamber (W)


heat loss in the slag catcher (W)


heat carried away in the off-gas (W)


heat input of arc (W)


electric power of arc (W)


specific power consumption (kw Hr kg−1)


specific heat flow to wall (W m−2)


degree of carbon gasification (%)


level of sulfur conversion into gas phase (%)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bittner, H. Bauman, C. Peucker, J. Klein, and H. Juntgen,Erdol Kohle, Erdgas, Petrochem. 34, 237 (1981).Google Scholar
  2. 2.
    J. G. Wragg, M. A. Kaleel, and C. S. Kim,Coal Process. Technol. 6, 186 (1980).Google Scholar
  3. 3.
    E. A. Kolobova,Khim. Tverd. Topl., No.2, 91 (1983).Google Scholar
  4. 4.
    H. Herlitz and S. Santen,Chem. Stosow. 28, 49 (1984).Google Scholar
  5. 5.
    V. E. Messerle, Z. B. Sakipov, and B. G. Trusov,Izv. Sib. Otd. Akad Nauk SSSR, Ser. Tekh. Nauk, No.18, 95 (1988).Google Scholar
  6. 6.
    Z. B. Sakipov, V. E. Messerle, Sh. Sh. Ibrayev,et al., Khimi. Vys. Energ.20, 61 (1986).Google Scholar
  7. 7.
    Z. B. Sakipov, V. E. Messerle, Sh. Sh. Ibrayev, and V. P. Riabinin,Abstracts of Proc. of the 9th All-Union Conference on Low-Temperatures Plasma Generators, ILIM, Frunze, (1983), p. 364.Google Scholar
  8. 8.
    USSR State Standard GOST 10533-72: Brown Coal, Anthracite, Rock, Oil Shale, and Peat, Methods of Chemical Analysis of Ash.Google Scholar
  9. 9.
    American Society for Testing and Materials, Baltimore (1963).Google Scholar
  10. 10.
    G. B. Siniarev, N. A. Vatolin, B. G. Trusov, and G. K. Moiseev,Computer Applications in Thermodynamic Calculations of Metallurgical Processes, Nauka, Moscow (1982).Google Scholar
  11. 11.
    M. I. Vdovenko, Sh. Sh. Ibrayev, V. E. Messerle,et al., Plasma Gasification and Pyrolysis of High-Grade Coal, ENIN, Moscow (1987), p. 59.Google Scholar
  12. 12.
    Z. R. Gorbis,Heat Transfer and Hydrodvnamics of Disperse Scvoznikh Flows, Energia, Moscow (1970).Google Scholar
  13. 13.
    Z. F. Chuhanow,Int. J. Heat Mass Transfer 14, 337 (1971).Google Scholar
  14. 14.
    H. Reidelbach, and J. Algermissen, Proceedings of the 13th Intersociety Energy Conversion Engineering Conference, Vol. 1, Society of Automotive Engineers (1978).Google Scholar
  15. 15.
    K. M. Sprouse,AIChE J. 26, 964 (1980).Google Scholar
  16. 16.
    V. I. Babii and Yu. K. Kuvaiev,Combustion of Coal Dust and Calculation of the Coal Dust Flame, Energoatomizdat, Moscow (1986).Google Scholar
  17. 17.
    J. M. Thomas and W. J. Thomas,Introduction to the Principles of Heterogeneous Catalysis, Academic Press, London (1967).Google Scholar
  18. 18.
    R. A. Kalinenko, A. A. Levitskiy, Yu. A. Mirokhin, and L. S. Polak,Kinet. Katal. 28, 723 (1987).Google Scholar
  19. 19.
    E. S. Golovina, R. A. Kalinenko, A. A. Levitskiy, Yu. A. Mirokhin, L. S. Polak, and O. S. Yusim,Fiz. Goren. Vzryva 5, 88 (1988).Google Scholar
  20. 20.
    A. Goyal and D. Gidaspow,Ind. Eng. Chem. Process Des. Dev. 21, 611 (1982).Google Scholar
  21. 21.
    N. B. Vargaftik,Handbook of Thermophysical Properties of Gases and Liquids, Nauka, Moscow (1972).Google Scholar
  22. 22.
    L. D. Smoot and D. J. Pratt,Pulverized Coal Combustion and Gasification, Plenum Press, New York (1979).Google Scholar
  23. 23.
    D. A. Frank-Kamenetskii,Diffusion and Heat Transfer in Chemical Kinetics, Nauka, Moscow (1967).Google Scholar
  24. 24.
    S. W. Benson,Thermochemical Kinetics, Wiley, New York, London (1976).Google Scholar
  25. 25.
    A. A. Agroskin, V. B. Gleibman, E. I. Goncharov, and V. P. Yakunin,Koks Khim. 2, (1974).Google Scholar
  26. 26.
    A. A. Agroskin, E. I. Goncharov, L. V. Lovetskiy, L. A. Makeev, N. S. Griaznov, and V. V. Mochalov,Koks Khim. 11, 1 (1968).Google Scholar
  27. 27.
    L. S. Polak, M. Ya. Goldenberg, and A. A. Levitskii,Computational Methods in Chemical Kinetics, Nauka, Moscow (1984).Google Scholar
  28. 28.
    H. J. Beiers, H. Bauman, D. Bittner, and 1. Klein, Intern. Symp. on Plasma Chemistry, Eindhoven, Preprint, Paper No. B-2-2 (1985), p.232.Google Scholar
  29. 29.
    P. R. Solomon, D. J. Hambeln, R. M. Carangelo, and J. L. Krause, 19th Symp. Intern. Combustion, Pittsburgh (1982), p. 1139.Google Scholar
  30. 30.
    F. Kayihan and G. V. Reklaitis,Ind. Eng. Chem. Process Des. Dev. 19, 15 (1980).Google Scholar
  31. 31.
    C. K. Westbrook, F. L. Dryer, K. P. Schug, 19th Symp. Intern. Combustion, Pittsburgh (1982), pp. 153–156.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • R. A. Kalinenko
    • 1
  • A. P. Kuznetsov
    • 1
  • A. A. Levitsky
    • 1
  • V. E. Messerle
    • 2
  • Yu. A. Mirokhin
    • 1
  • L. S. Polak
    • 1
  • Z. B. Sakipov
    • 2
  • A. B. Ustimenko
    • 2
  1. 1.Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Kazakh Research Institute of Power EngineeringAlma-AtaKazakhstan

Personalised recommendations