Mathematische Annalen

, Volume 287, Issue 1, pp 323–334 | Cite as

Stability of the homology of the moduli spaces of Riemann surfaces with spin structure

  • John L. Harer


Modulus Space Riemann Surface Spin Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [E.B.] Brown, E.: The Kervaire invariant of a manifold. AMS Proc. Pure Math.22, 65–71 (1970)Google Scholar
  2. [K.B.] Brown, K.: Cohomology of groups. Berlin Heidelberg New York: Springer 1982. Graduate Texts in Mathematics, vol. 87Google Scholar
  3. [C] Charney, R.: Homology stability of GLn of a Dedekind domain. Invent. Math.56, 1–17 (1980)Google Scholar
  4. [H1] Harer, J.: The second homology group of the mapping class group of an orientable surface. Invent. Math.72, 221–239 (1982)Google Scholar
  5. [H2] Harer, J.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. Math.121, 215–249 (1985)Google Scholar
  6. [H3] Harer, J.: The third homology group of the moduli space of curves (preprint, 1988)Google Scholar
  7. [H4] Harer, J.: The Picard group of the moduli space of curves with spin structure (preprint, 1988)Google Scholar
  8. [LMW] Lee, R., Miller, E., Weintraub, S.: Rochlin invariants, theta functions and the holonomy of some determinant line bundles. J. reine angew. Math.392, 187–218 (1988)Google Scholar
  9. [Q] Quillen, D.: MIT lectures (1974–1975)Google Scholar
  10. [RS] Rourke, C., Sullivan, D.: On the Kervaire obstruction. Ann. Math.94, 397–413 (1971)Google Scholar
  11. [V] Vogtmann, K.: Spherical posets and homology stability forO n, n.. Topology20, 119–132 (1981)Google Scholar
  12. [W] Wagoner, J.B.: Stability for homology of the general linear group of a local ring. Topology15, 417–423 (1976)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • John L. Harer
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations