Mathematische Annalen

, Volume 287, Issue 1, pp 323–334 | Cite as

Stability of the homology of the moduli spaces of Riemann surfaces with spin structure

  • John L. Harer


Modulus Space Riemann Surface Spin Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [E.B.] Brown, E.: The Kervaire invariant of a manifold. AMS Proc. Pure Math.22, 65–71 (1970)Google Scholar
  2. [K.B.] Brown, K.: Cohomology of groups. Berlin Heidelberg New York: Springer 1982. Graduate Texts in Mathematics, vol. 87Google Scholar
  3. [C] Charney, R.: Homology stability of GLn of a Dedekind domain. Invent. Math.56, 1–17 (1980)Google Scholar
  4. [H1] Harer, J.: The second homology group of the mapping class group of an orientable surface. Invent. Math.72, 221–239 (1982)Google Scholar
  5. [H2] Harer, J.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. Math.121, 215–249 (1985)Google Scholar
  6. [H3] Harer, J.: The third homology group of the moduli space of curves (preprint, 1988)Google Scholar
  7. [H4] Harer, J.: The Picard group of the moduli space of curves with spin structure (preprint, 1988)Google Scholar
  8. [LMW] Lee, R., Miller, E., Weintraub, S.: Rochlin invariants, theta functions and the holonomy of some determinant line bundles. J. reine angew. Math.392, 187–218 (1988)Google Scholar
  9. [Q] Quillen, D.: MIT lectures (1974–1975)Google Scholar
  10. [RS] Rourke, C., Sullivan, D.: On the Kervaire obstruction. Ann. Math.94, 397–413 (1971)Google Scholar
  11. [V] Vogtmann, K.: Spherical posets and homology stability forO n, n.. Topology20, 119–132 (1981)Google Scholar
  12. [W] Wagoner, J.B.: Stability for homology of the general linear group of a local ring. Topology15, 417–423 (1976)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • John L. Harer
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations