Mathematische Annalen

, Volume 301, Issue 1, pp 211–235 | Cite as

Arrangements and Milnor fibers

  • Peter Orlik
  • Hiroaki Terao

Mathematics Subject Classification (1991)

52B30 32S55 05B35 14F40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aomoto, K.: Hypergeometric functions, the past, today, and... (from complex analytic view point) (in Japanese).45, 208–220 (1993) SuugakuGoogle Scholar
  2. 2.
    Aomoto, K.: Private communicationGoogle Scholar
  3. 3.
    Brieskorn, E.: Sur les groupes de tresses. In: Séminaire Bourbaki 1971/72. (Lect. Notes Math., vol. 317, pp. 21–44) Berlin Heidelberg New York: Springer 1973Google Scholar
  4. 4.
    Bruce, J.W., Roberts, R.M.: Critical points of functions on analytic varieties. Topology,27, 57–91 (1988)Google Scholar
  5. 5.
    Damon, J.: Higher multiplicities and almost free divisors and complete intersections. (Preprint 1992)Google Scholar
  6. 6.
    Edelman, P., Reiner, V.: A counterexample to Orlik's conjecture. Proc. Am. Math. Soc.118, 927–929 (1993)Google Scholar
  7. 7.
    Guillemin, V., Pollack, A.: Differential Topology. Prentice Hall 1974Google Scholar
  8. 8.
    Hassell, C., Rees, E.: The index of a constrained critical point. (Preprint 1991)Google Scholar
  9. 9.
    Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser 1985Google Scholar
  10. 10.
    Milnor, J.: Singular points of complex hypersurfaces. (Ann. Math. Stud., vol. 61) Princeton University Press 1968Google Scholar
  11. 11.
    Orlik, P.: Milnor fiber complexes for Shephard groups. Adv. Math.83, 135–154 (1990)Google Scholar
  12. 12.
    Orlik, P., Solomon, L.: Complexes for reflection groups. In: Algebraic Geometry. (Lect. Notes Math., vol. 862, pp. 193–207) Berlin Heidelberg New York: Springer 1981Google Scholar
  13. 13.
    Orlik, P., Terao, H.: Arrangements of hyperplanes. (Grundlehren Math. Wiss., vol. 300) Berlin Heidelberg New York: Springer 1992Google Scholar
  14. 14.
    Orlik, P., Terao, H.: Coxeter arrangements are hereditarily free. Tohoku Math. J.45, 369–383 (1993)Google Scholar
  15. 15.
    Orlik, P., Terao, H.: Commutative algebras for arrangements. Nagoya Math. J.134, 65–73 (1994)Google Scholar
  16. 16.
    Rose, L., Terao, H.: A free resolution of the module of logarithmic forms of a generic arrangement. J. Algebra136, 376–400 (1991)Google Scholar
  17. 17.
    Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math.27, 265–291 (1981)Google Scholar
  18. 18.
    Solomon, L., Terao, H.: A formula for the characteristics polynomial of an arrangement. Adv. Math.64, 305–325 (1987)Google Scholar
  19. 19.
    Terao, H.: Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskorn formula. Invent. Math.63, 159–179 (1981)Google Scholar
  20. 20.
    Zaslavsky, T.: Facing up to arrangements of hyperplanes: Face-count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. vol. 154, 1975Google Scholar
  21. 21.
    Aomoto, K., Kita, M., Orlik, P, Terao, H.: Twisted de Rham cohomology groups of logarithmic forms. (to appear) Adv. Math.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Peter Orlik
    • 1
  • Hiroaki Terao
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations