Mathematische Annalen

, Volume 301, Issue 1, pp 211–235 | Cite as

Arrangements and Milnor fibers

  • Peter Orlik
  • Hiroaki Terao
Article

Mathematics Subject Classification (1991)

52B30 32S55 05B35 14F40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aomoto, K.: Hypergeometric functions, the past, today, and... (from complex analytic view point) (in Japanese).45, 208–220 (1993) SuugakuGoogle Scholar
  2. 2.
    Aomoto, K.: Private communicationGoogle Scholar
  3. 3.
    Brieskorn, E.: Sur les groupes de tresses. In: Séminaire Bourbaki 1971/72. (Lect. Notes Math., vol. 317, pp. 21–44) Berlin Heidelberg New York: Springer 1973Google Scholar
  4. 4.
    Bruce, J.W., Roberts, R.M.: Critical points of functions on analytic varieties. Topology,27, 57–91 (1988)Google Scholar
  5. 5.
    Damon, J.: Higher multiplicities and almost free divisors and complete intersections. (Preprint 1992)Google Scholar
  6. 6.
    Edelman, P., Reiner, V.: A counterexample to Orlik's conjecture. Proc. Am. Math. Soc.118, 927–929 (1993)Google Scholar
  7. 7.
    Guillemin, V., Pollack, A.: Differential Topology. Prentice Hall 1974Google Scholar
  8. 8.
    Hassell, C., Rees, E.: The index of a constrained critical point. (Preprint 1991)Google Scholar
  9. 9.
    Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser 1985Google Scholar
  10. 10.
    Milnor, J.: Singular points of complex hypersurfaces. (Ann. Math. Stud., vol. 61) Princeton University Press 1968Google Scholar
  11. 11.
    Orlik, P.: Milnor fiber complexes for Shephard groups. Adv. Math.83, 135–154 (1990)Google Scholar
  12. 12.
    Orlik, P., Solomon, L.: Complexes for reflection groups. In: Algebraic Geometry. (Lect. Notes Math., vol. 862, pp. 193–207) Berlin Heidelberg New York: Springer 1981Google Scholar
  13. 13.
    Orlik, P., Terao, H.: Arrangements of hyperplanes. (Grundlehren Math. Wiss., vol. 300) Berlin Heidelberg New York: Springer 1992Google Scholar
  14. 14.
    Orlik, P., Terao, H.: Coxeter arrangements are hereditarily free. Tohoku Math. J.45, 369–383 (1993)Google Scholar
  15. 15.
    Orlik, P., Terao, H.: Commutative algebras for arrangements. Nagoya Math. J.134, 65–73 (1994)Google Scholar
  16. 16.
    Rose, L., Terao, H.: A free resolution of the module of logarithmic forms of a generic arrangement. J. Algebra136, 376–400 (1991)Google Scholar
  17. 17.
    Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math.27, 265–291 (1981)Google Scholar
  18. 18.
    Solomon, L., Terao, H.: A formula for the characteristics polynomial of an arrangement. Adv. Math.64, 305–325 (1987)Google Scholar
  19. 19.
    Terao, H.: Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskorn formula. Invent. Math.63, 159–179 (1981)Google Scholar
  20. 20.
    Zaslavsky, T.: Facing up to arrangements of hyperplanes: Face-count formulas for partitions of space by hyperplanes. Mem. Am. Math. Soc. vol. 154, 1975Google Scholar
  21. 21.
    Aomoto, K., Kita, M., Orlik, P, Terao, H.: Twisted de Rham cohomology groups of logarithmic forms. (to appear) Adv. Math.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Peter Orlik
    • 1
  • Hiroaki Terao
    • 1
  1. 1.Mathematics DepartmentUniversity of WisconsinMadisonUSA

Personalised recommendations