Mathematische Annalen

, Volume 289, Issue 1, pp 631–662 | Cite as

Geometric invariant theory on Stein spaces

  • Peter Heinzner
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [C]
    Cartan, H.: Œuvres, Vol. I. Berlin Heidelberg New York: Springer 1979Google Scholar
  2. [Ch]
    Chevalley, C.: Theory of Lie groups. Princeton: Princeton University Press 1946Google Scholar
  3. [D, K]
    Dadok, J., Kac, V.: Polar representations. J. Algebra92, 504–524 (1985)Google Scholar
  4. [G1]
    Grauert, H.: On Levi's problem and the imbedding of real analytic manifolds. Ann. Math.68, 460–472 (1958)Google Scholar
  5. [G2]
    Grauert, H.: Set theoretic complex equivalence relations. Math. Ann.265, 137–148 (1983)Google Scholar
  6. [H1]
    Heinzner, P.: Linear äquivariante Einbettungen Steinscher Räume. Math. Ann.280, 147–160 (1988)Google Scholar
  7. [H2]
    Heinzner, P.: Kompakte Transformationsgruppen Steinscher Räume. Math. Ann.285, 13–28 (1989)Google Scholar
  8. [H3]
    Heinzner, P.: Fixpunktmengen kompakter Gruppen in Teilgebieten Steinscher Mannigfaltigkeiten. J. reine angew. Math.402, 128–137 (1989)Google Scholar
  9. [Ho]
    Hochschild, G.: The structure of Lie groups. San Francisco London Amsterdam: Holden-Day 1965Google Scholar
  10. [J]
    Jänich, K.: DifferenzierbareG-Mannigfaltigkeiten. (Lect. Notes Math., Vol. 9) Berlin Heidelberg New York: Springer 1968Google Scholar
  11. [K1]
    Kaup, W.: Infinitesimale Transformationsgruppen komplexer Räume. Math. Ann.160, 72–92 (1965)Google Scholar
  12. [K2]
    Kaup, W.: Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math.3, 43–70 (1967)Google Scholar
  13. [K, N]
    Kempf, G., Ness, L.: The length of vectors in representations spaces. In: Algebraic geometry. (Lect. Notes Math., Vol. 732, pp. 233–244) Berlin Heidelberg New York: Springer 1979Google Scholar
  14. [Kr]
    Kraft, H.: Geometrische Methoden in der Invariantentheorie. Braunschweig Wiesbaden: Vieweg 1985Google Scholar
  15. [K, S, S]
    Kraft, H., Slodowy, P., Springer, T.A.: Algebraische Transformationsgruppen und Invariantentheorie. DMV Seminar Bd. 13. Basel Boston Berlin: Birkhäuser 1989Google Scholar
  16. [L]
    Lassalle, M.: Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact. Ann. Sci. Éc. Norm. Supér. IV Sér.11, 167–210 (1978)Google Scholar
  17. [Lu1]
    Luna, D.: Slice etales. Bull. Soc. Math. Fr. Mem.33, 81–105 (1973)Google Scholar
  18. [Lu2]
    Luna, D.: Fonctions différentiables invariantes sous l'opération d'un groupe réductif. Ann. Inst. Fourier26, 33–49 (1976)Google Scholar
  19. [Lu3]
    Luna, D.: Sur certaines opérations différentiables des groupes de Lie. Am. J. Math.97, 172–181 (1975)Google Scholar
  20. [Lu4]
    Luna, D.: Sur les orbites fermées des groupes algébriques réductifs. Invent. Math.16, 1–5 (1972)Google Scholar
  21. [Mo1]
    Mostow, G.D.: Some new decomposition theorems for semi-simple groups. Am. Math. Soc.14, 31–51 (1955)Google Scholar
  22. [Mo2]
    Mostow, G.D.: On covariant fiberings of Klein spaces. Am. J. Math.77, 247–278 (1955)Google Scholar
  23. [P, S]
    Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math.81, 539–554 (1985)Google Scholar
  24. [RH, W]
    Reese, H.F., Wells, R.O.: Zero sets of non-negative strictly plurisubharmonic functions. Math. Ann.201, 165–170 (1973)Google Scholar
  25. [R]
    Roberts, M.: A note on coherentG-sheaves. Math. Ann.275, 573–582 (1986)Google Scholar
  26. [Ro]
    Rothaus, O.S.: Envelops of holomorphy of domains in complex Lie groups. In: Problems on analysis, 309–317. Princeton: University Press 1970Google Scholar
  27. [S]
    Snow, D.M.: Reductive group action on Stein spaces. Math. Ann.259, 79–97 (1982)Google Scholar
  28. [S, W]
    Streater, R.F., Wightman, A.S.: Die Prinzipien der Quantenfeldtheorie. Bibliographisches Institut Mannheim Zürich: Hochschultaschenbücherverlag 1969Google Scholar
  29. [W]
    Warner, G.: Harmonic analysis on semisimple Lie groups, Vol. I. Berlin New York: Springer 1972Google Scholar
  30. [We]
    Weyl, H.: The classical groups. Princeton, NJ. Princeton University Press 1946Google Scholar
  31. [Z, S]
    Zariski, O., Samuel, P.: Commutative algebra, Vol. I. Princeton, NJ: Van Nostrand 1961Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Peter Heinzner
    • 1
  1. 1.Fakultät und Institut für Mathematik der Ruhr-Universität BochumBochumGermany

Personalised recommendations