Advertisement

Mathematische Annalen

, Volume 289, Issue 1, pp 529–542 | Cite as

Banach spaces which are semi-L-summands in their biduals

  • Rafael Payá
  • Angel Rodríguez Palacios
Article

Keywords

Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfsen, E.M.: Compact convex sets and boundary integrals. Berlin Heidelberg New York: Springer 1971Google Scholar
  2. 2.
    Alfsen, E.M., Andersen, T.B.: Split faces of compact convex sets. Proc. Lond. Math. Soc.21, 415–442 (1970)Google Scholar
  3. 3.
    Alfsen, E.M., Effros, E.G.: Structure in real Banach spaces. Ann. Math.96, 98–173 (1972)Google Scholar
  4. 4.
    Asimow, L., Ellis, A.J.: Convexity theory and its applications in functional analysis. London New York: Academic Press 1980Google Scholar
  5. 5.
    Behrends, E.: M-structure and the Banach-Stone theorem (Lect. Notes Math., vol. 736). Berlin Heidelberg New York: Springer 1979Google Scholar
  6. 6.
    Behrends, E., Harmand, P.: Banach spaces which are properM-ideals. Stud. Math.81, 159–169 (1985)Google Scholar
  7. 7.
    Cabello, J.C., Mena, J.F., Payá, R., Rodríguez, A.: Banach spaces which are absolute subspaces in their biduals. Quart. J. Math. Oxf. (to appear)Google Scholar
  8. 8.
    Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Convexity and its applications. Gruber, P.M., Wills, J.M. (eds.), pp. 49–96. Basel Boston Stuttgart: Birkhäuser 1983Google Scholar
  9. 9.
    Eggleston, H.G.: Sets of constant width in finite dimensional Banach spaces. Isr. J. Math.3, 163–172 (1965)Google Scholar
  10. 10.
    Godefroy, G.: Parties admissibles d'un espace de Banach. Ann. Sci. École Norm. Super16, 109–122 (1983)Google Scholar
  11. 11.
    Godefroy, G.: Sous-espaces bien disposés deL 1-applications. Trans. Am. Math. Soc.286, 227–249 (1984)Google Scholar
  12. 12.
    Godefroy, G.: Metric characterization of first Baire class linear forms and octahedral norms. Stud. Math.95, 1–15 (1989)Google Scholar
  13. 13.
    Harmand, P.:M-ideale und die Einbettung von eines Banachraumes in seinen Bidualraum. Dissertation, Freie Universität Berlin, 1983Google Scholar
  14. 14.
    Harmand, P., Lima, Å.: Banach spaces which areM-ideals in their biduals. Trans. Am. Math. Soc.283, 253–264 (1983)Google Scholar
  15. 15.
    Harmand, P., Rao, T.: An intersection property of balls and relations withM-ideals. Math. Z.197, 277–290 (1988)Google Scholar
  16. 16.
    Harmand, P., Werner, D., Werner, W.:M-ideals in Banach spaces and Banach algebras. In preparationGoogle Scholar
  17. 17.
    Jameson, G.J.O.: Topology and normed spaces. London: Chapman and Hall, 1974Google Scholar
  18. 18.
    Li, D.: EspacesL-facteurs de leurs biduaux: bonne disposition, meilleure approximation et proprieté de Radon-Nikodym. Quart. J. Math. Oxf.38, 229–243 (1987)Google Scholar
  19. 19.
    Lima, Å.: Intersection properties of balls and subspaces of Banach spaces. Trans. Am. Math. Soc.227, 1–62 (1977)Google Scholar
  20. 20.
    Lima, Å.:M-ideals of compact operators in classical Banach spaces. Math. Scand.44, 207–217 (1979)Google Scholar
  21. 21.
    Lima, Å., Yost, D.T.: Absolutely Chebyshev subspaces. Proc. Centre Math. Anal. Australian Nat. Univ.20, 116–127 (1988)Google Scholar
  22. 22.
    Mena, J.F., Payá, R., Rodríguez, A.: Absolute subspaces of Banach spaces. Quart. J. Math. Oxford40, 43–64 (1989)Google Scholar
  23. 23.
    Payá, R., Yost, D.T.: The two-ball property: transitivity and examples. Mathematika35, 190–197 (1988)Google Scholar
  24. 24.
    Perdrizet, F.: Espaces de Banach ordonnés et ideaux. J. Math. Pures Appl.49, 61–98 (1970)Google Scholar
  25. 25.
    Saatkamp, K.: Schnitteigenschaften und beste Approximation. Dissertation, Bonn, 1979Google Scholar
  26. 26.
    Yost, D.: Irreducible convex sets. Mathematika (to appear)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Rafael Payá
    • 1
  • Angel Rodríguez Palacios
    • 1
  1. 1.Departamento de Análisis Matemático, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations