Advertisement

Mathematische Annalen

, Volume 289, Issue 1, pp 315–334 | Cite as

Uniformly distributed orbits of certain flows on homogeneous spaces

  • Nimish A. Shah
Article

Keywords

Homogeneous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Introduction aux groupes arithmetiques. Publ. Inst. Math. Univ. Strasbourg XV. Paris: Hermann 1969Google Scholar
  2. 2.
    Dani, S.G.: Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math.47, 101–138 (1978)Google Scholar
  3. 3.
    Dani, S.G., Smillie, J.: Uniform distribution of horocycle orbits for Fuchsian Groups. Duke Math.51, 185–194 (1984)Google Scholar
  4. 4.
    Dani, S.G.: Dynamics of flows on homogeneous spaces: A survey. Proceedings of Coloquio de Systemas Dinamicos (Guanajuato, 1983). Aportaciones Mat. Notas Invest.1, 1–30 (1985)Google Scholar
  5. 5.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces. Ergodic Theory Dyn. Syst.4, 25–34 (1984)Google Scholar
  6. 6.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces II. Ergodic Theory Dyn. Syst.6, 167–182 (1986)Google Scholar
  7. 7.
    Dani, S.G., Margulis, G.A.: Values of quadratic forms at primitive integral points. Invent. Math.98, 405–424 (1989)Google Scholar
  8. 8.
    Dani, S.G., Margulis, G.A.: Orbit closures of generic unipotent flows on homogeneous spaces ofSL(3, ℝ). Math. Ann.286, 101–128 (1990)Google Scholar
  9. 9.
    Dani, S.G., Margulis, G.A.: Values of quadratic forms at integral points: an elementary approach. Enseign. Math.36, 143–174 (1990)Google Scholar
  10. 10.
    Denker, M., Grillenberger, Ch., Sigmund, K.: Ergodic theory on compact spaces. (Lect. Notes Math., vol. 527) Berlin Heidelberg New York: Springer 1976Google Scholar
  11. 11.
    Fürstenberg, H.: The unique ergodicity of the horocycle flow. In: Beck, A. (ed.) Recent Advances in Topological Dynamics. (Lect. Notes Math., vol. 318, pp. 95–115) Berlin Heidelberg New York: Springer 1973Google Scholar
  12. 12.
    Garland, H., Raghunathan, M.S.: Fundamental domains for lattices in ℝ-rank 1 semisimple Lie groups. Ann. Math.92, 279–326 (1970)Google Scholar
  13. 13.
    Green, L.: Nilflows, measure theory. In: Flows on homogeneous spaces. Ann. Math. Studies. Auslander, L., Green, L., Hahn, F. (eds.). Princeton: Princeton Univ. Press 1963Google Scholar
  14. 14.
    Margulis, G.A.: Lie groups and ergodic theory. In: Avramov, L.L. (ed.) Algebra — Some Current Trends. Proceedings Varna 1986. (Lect. Notes Math., vol. 1352, pp. 130–146) Berlin Heidelberg New York: Springer 1988Google Scholar
  15. 15.
    Margulis, G.A.: Discrete subgroups and ergodic theory. In: Number theory, trace formulas and discrete subgroups, pp. 377–398. New York London: Academic Press 1989Google Scholar
  16. 16.
    Moore, C.C.: The Mautner phenomenon for general unitary representations. Pac. J. Math.86, 155–169 (1980)Google Scholar
  17. 17.
    Parry, W.: Ergodic properties of affine transformations and flows on nilmanifolds. Am. J. Math.91, 757–771 (1969)Google Scholar
  18. 18.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin Heidelberg New York: Springer 1972Google Scholar
  19. 19.
    Ratner, M.: Invariant measures for unipotent translations on homogeneous spaces. Proc. Nat. Acad. Sci. USA87, 4309–4311 (1990)Google Scholar
  20. 20.
    Steinberg, R.: Conjugacy classes in algebraic groups (Lect. Notes Math., vol. 366). Berlin Heidelberg New York: Springer 1974Google Scholar
  21. 21.
    Zimmer, R.J.: Ergodic theory and semisimple groups. Boston: Birkhäuser 1984Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Nimish A. Shah
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations