Mathematische Annalen

, Volume 289, Issue 1, pp 315–334

Uniformly distributed orbits of certain flows on homogeneous spaces

  • Nimish A. Shah
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Introduction aux groupes arithmetiques. Publ. Inst. Math. Univ. Strasbourg XV. Paris: Hermann 1969Google Scholar
  2. 2.
    Dani, S.G.: Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math.47, 101–138 (1978)Google Scholar
  3. 3.
    Dani, S.G., Smillie, J.: Uniform distribution of horocycle orbits for Fuchsian Groups. Duke Math.51, 185–194 (1984)Google Scholar
  4. 4.
    Dani, S.G.: Dynamics of flows on homogeneous spaces: A survey. Proceedings of Coloquio de Systemas Dinamicos (Guanajuato, 1983). Aportaciones Mat. Notas Invest.1, 1–30 (1985)Google Scholar
  5. 5.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces. Ergodic Theory Dyn. Syst.4, 25–34 (1984)Google Scholar
  6. 6.
    Dani, S.G.: On orbits of unipotent flows on homogeneous spaces II. Ergodic Theory Dyn. Syst.6, 167–182 (1986)Google Scholar
  7. 7.
    Dani, S.G., Margulis, G.A.: Values of quadratic forms at primitive integral points. Invent. Math.98, 405–424 (1989)Google Scholar
  8. 8.
    Dani, S.G., Margulis, G.A.: Orbit closures of generic unipotent flows on homogeneous spaces ofSL(3, ℝ). Math. Ann.286, 101–128 (1990)Google Scholar
  9. 9.
    Dani, S.G., Margulis, G.A.: Values of quadratic forms at integral points: an elementary approach. Enseign. Math.36, 143–174 (1990)Google Scholar
  10. 10.
    Denker, M., Grillenberger, Ch., Sigmund, K.: Ergodic theory on compact spaces. (Lect. Notes Math., vol. 527) Berlin Heidelberg New York: Springer 1976Google Scholar
  11. 11.
    Fürstenberg, H.: The unique ergodicity of the horocycle flow. In: Beck, A. (ed.) Recent Advances in Topological Dynamics. (Lect. Notes Math., vol. 318, pp. 95–115) Berlin Heidelberg New York: Springer 1973Google Scholar
  12. 12.
    Garland, H., Raghunathan, M.S.: Fundamental domains for lattices in ℝ-rank 1 semisimple Lie groups. Ann. Math.92, 279–326 (1970)Google Scholar
  13. 13.
    Green, L.: Nilflows, measure theory. In: Flows on homogeneous spaces. Ann. Math. Studies. Auslander, L., Green, L., Hahn, F. (eds.). Princeton: Princeton Univ. Press 1963Google Scholar
  14. 14.
    Margulis, G.A.: Lie groups and ergodic theory. In: Avramov, L.L. (ed.) Algebra — Some Current Trends. Proceedings Varna 1986. (Lect. Notes Math., vol. 1352, pp. 130–146) Berlin Heidelberg New York: Springer 1988Google Scholar
  15. 15.
    Margulis, G.A.: Discrete subgroups and ergodic theory. In: Number theory, trace formulas and discrete subgroups, pp. 377–398. New York London: Academic Press 1989Google Scholar
  16. 16.
    Moore, C.C.: The Mautner phenomenon for general unitary representations. Pac. J. Math.86, 155–169 (1980)Google Scholar
  17. 17.
    Parry, W.: Ergodic properties of affine transformations and flows on nilmanifolds. Am. J. Math.91, 757–771 (1969)Google Scholar
  18. 18.
    Raghunathan, M.S.: Discrete subgroups of Lie groups. Berlin Heidelberg New York: Springer 1972Google Scholar
  19. 19.
    Ratner, M.: Invariant measures for unipotent translations on homogeneous spaces. Proc. Nat. Acad. Sci. USA87, 4309–4311 (1990)Google Scholar
  20. 20.
    Steinberg, R.: Conjugacy classes in algebraic groups (Lect. Notes Math., vol. 366). Berlin Heidelberg New York: Springer 1974Google Scholar
  21. 21.
    Zimmer, R.J.: Ergodic theory and semisimple groups. Boston: Birkhäuser 1984Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Nimish A. Shah
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations