Mathematische Annalen

, Volume 289, Issue 1, pp 169–187 | Cite as

Projective manifolds whose tangent bundles are numerically effective

  • Frédéric Campana
  • Thomas Peternell


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AT]
    Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc.7, 415–452 (1957)Google Scholar
  2. [B]
    Blanchard, A.: Sur les varietés analytiques complexes. Ann. Sci. Ec. Norm. Super.73, 156–202 (1956)Google Scholar
  3. [BO]
    Barth, W., Oeljeklaus, E.: Über die Albanese Abbildung einer fast-homogenen Kähler Mannigfaltigkeit. Math. Ann.211, 47–62 (1974)Google Scholar
  4. [BPV]
    Barth, W., Peters, C., van de Ven, A.: Compact complex surface. Erg. d. Math. Bd. 3, Berlin Heidelberg New York: Springer 1984Google Scholar
  5. [C]
    Campana, F.: Réduction d'Albanese d'un morphisme Kählerien propre, I et II. Compos. Math.54, 373–416 (1985)Google Scholar
  6. [D]
    Donaldson, S.K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. London Math. Soc.50, 1–26 (1985)Google Scholar
  7. [Fu]
    Fulton, W.: Intersection theory. (Erg. Math. vol. 2), Berlin Heidelberg New York: Springer 1984Google Scholar
  8. [Gr]
    Griffiths, Ph.A.: The extension problem in complex analysis. II. Am. J. Math.88, 366–446 (1966)Google Scholar
  9. [Ha]
    Hartshorne, R.: Algebraic geometry. Graduate Texts in Math. 52, Berlin Heidelberg New York: Springer 1977Google Scholar
  10. [Is]
    Iskovskih, V.A.: Fano 3-folds. I, II. Math. USSR Isv.11, 485–527 (1977);12, 469–506 (1978)Google Scholar
  11. [KMM]
    Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. Adv. Stud. Pure Math.10, 283–360 (1987)Google Scholar
  12. [KO]
    Kobayashi, S., Ochiai, T.: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ.13, 31–47 (1973)Google Scholar
  13. [Mi]
    Miyaoka, Y.: The Chern classes and Kodaira dimension of a minimal variety. Adv. Stud. Pure Math.10, 449–476 (1985)Google Scholar
  14. [Mk]
    Mok, N.: The uniformization theorem for compact Kähler manifolds of non negative holomorphic bisectional curvature. J. Differ. Geom.27, 179–214 (1988)Google Scholar
  15. [MM]
    Mori, S., Mukai, S.: On Fano 3-folds withb 2 ≧2. Manuscr. Math.36, 147–162 (1981)Google Scholar
  16. [Mo]
    Mori, S.: Threefolds whose canonical bundlesare not numerically effective Ann. Math.116, 133–176 (1982)Google Scholar
  17. [OSS]
    Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Basel: Birkhäuser 1980Google Scholar
  18. [Sh]
    Shokurov, V.V.: The existence of a straight line on Fano 3-folds. Math. USSR Isv.15, 173–209 (1980)Google Scholar
  19. [SW]
    Szurek, M., Wiśniewski, J.: Fano bundles of rank 2 on surfaces. Compos. Math.76, 295–305 (1990)Google Scholar
  20. [Y]
    Yau, S.T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA74, 1789 (1977)Google Scholar
  21. [P]
    Peternell, Th.: Calabi-Yau manifolds and a conjecture of Kobayashi. Preprint, Bayreuth 1990Google Scholar
  22. [Ba]
    Bando, S.: On the classification of three-dimensional compact Kähler manifolds of non negative bisectional curvature. J. Differ. Geom.19, 283–297 (1984)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Frédéric Campana
    • 1
  • Thomas Peternell
    • 1
  1. 1.Mathematisches Institut der Universität BayreuthBayreuthGermany

Personalised recommendations