Mathematische Annalen

, Volume 289, Issue 1, pp 143–167

On unknotting tunnels for knots

  • Kanji Morimoto
  • Makoto Sakuma
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bi]
    Birman, J.S.: Braids, links, and mapping class groups. Ann. Math. Stud.82, (1974)Google Scholar
  2. [BH]
    Birman, J.S., Hilden, H.M.: On the mapping class groups of closed surfaces as covering spaces. In: Advances in the theory of Riemann surfaces. Ann. Math. Stud.66, 81–115 (1971)Google Scholar
  3. [BM]
    Bleiler, A.S., Moriah, Y.: Heegaard splittings and branched coverings of B3. Math. Ann.281, 531–543 (1988)Google Scholar
  4. [BCZ1]
    Boileau, M., Collins, D.J., Zieschang, H.: Scindements de Heegaard des petites variétés de Seifert. C.R. Acad. Sci. Paris303-I, 557–560 (1987)Google Scholar
  5. [BCZ2]
    Boileau, M., Collins, D.J., Zieschang, H.: Genus 2 Heegaard decompositions of small Seifert manifolds. PreprintGoogle Scholar
  6. [BRZ]
    Boileau, M., Rost, M., Zieschang, H.: On Heegaard decompositions of torus exteriors and related Seifert fibred spaces. Math. Ann.279, 553–581 (1988)Google Scholar
  7. [BS]
    Bonahon, F., Siebenmann, L.: Geometric splittings of knots, and Conway's algebraic knots. PreprintGoogle Scholar
  8. [BZ]
    Burde, G., Zieschang, H.: Knots. De Gruyter Studies in Mathematics 5. Berlin New York: de Gruyter 1985Google Scholar
  9. [By]
    Boyle, J.: Classifying 1-handles attached to knotted surfaces. Trans. Am. Math. Soc.306, 475–487 (1988)Google Scholar
  10. [C]
    Collins, D.J.: Presentations of the amalgamated free products of two infinite cycles. Math. Ann.237, 233–241 (1978)Google Scholar
  11. [CGLS]
    Culler, M., Gordon, C.McA., Lueke, J., Shalen, P.B.: Dehn surgery on knots. Ann. Math.125, 237–300 (1987)Google Scholar
  12. [E]
    Epstein, D.B.A.: Curves on 2-manifolds and isotopies. Acta Math.115, 83–107 (1966)Google Scholar
  13. [FK]
    Fukuhara, S., Kanno, J.: Extended Alexander matrices of 3-manifolds. I.. Tokyo J. Math.8, 107–120 (1985)Google Scholar
  14. [F]
    Funke, K.: Nicht freie äquivalente Darstellungen mit einer definierenden Relation. Math. Z.141, 205–217 (1975)Google Scholar
  15. [Ga]
    Gabai, D.: Detecting fibred links inS 3. Comment. Math. Helv.61, 519–555 (1986)Google Scholar
  16. [Go]
    Gordon, C.McA.: On primitive sets of loops in the boundary of a handlebody. Topology Appl.27, 285–299 (1987)Google Scholar
  17. [GLM]
    Gordon, C.McA., Litherland, R.A., Murasugi, K.: Signature of covering links. Can. J. Math.33, 381–394 (1981)Google Scholar
  18. [Hn]
    Handel, M.: New proofs of some results of Nielsen. Adv. Math.56, 173–191 (1985)Google Scholar
  19. [HK]
    Hartley, R., Kawauchi, A.: Polynomials of amphicheiral knots. Math. Ann.243, 63–70 (1979)Google Scholar
  20. [Ja]
    Jaco, W.: Lectures on three manifolds topology. CBMS Reg. Conf. Ser. Math.43 (1980)Google Scholar
  21. [JS]
    Jaco, W., Shalen, P.B.: Seifert fibred space in 3-manifolds. Mem. Am. Math. Soc.220 (1979)Google Scholar
  22. [Jo]
    Johannson, K.: Homotopy equivalences of 3-manifolds with boundaries. Lect. Notes in Math.761. Berlin Heidelberg New York: Springer 1979Google Scholar
  23. [K1]
    Kobayashi, T.: Structures of the Haken manifolds with Heegaard splittings of genus two. Osaka J. Math.21, 437–455 (1984)Google Scholar
  24. [K2]
    Kobayashi, T.: Structures of full Haken manifolds. Osaka J. Math.24, 173–215 (1987)Google Scholar
  25. [K3]
    Kobayashi, T.: A criterion for detecting inequivalent tunnels for a knot. To appear in Math. Proc. Camb. Phil. Soc.107, 483–491 (1990)Google Scholar
  26. [LM]
    Lustig, M., Moriah, Y.: Nielsen equivalence in Fuchsian groups and Seifert fibred spaces. PreprintGoogle Scholar
  27. [LS]
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Ergeb. Math. Grenzgeb. 89. Berlin Heidelberg New York: Springer 1977Google Scholar
  28. [Mh1]
    Moriah, Y.: On Heegaard splittings and group presentations. Thesis, Univ. Texas, 1986Google Scholar
  29. [Mh2]
    Moriah, Y.: Heegaard splittings of Seifert fibred spaces. Invent. Math.91, 465–481 (1988)Google Scholar
  30. [Mt]
    Morimoto, K.: On minimum genus Heegaard splittings of some orientable closed 3-manifolds. Tokyo J. Math.12, 321–355 (1989)Google Scholar
  31. [Ms]
    Moser, L.: Elementary surgery along a torus knot. Pacific J. Math.38, 737–745 (1971)Google Scholar
  32. [Mu]
    Murasugi, K.: Seifert fibre spaces and braid groups. Proc. Lond. Math. Soc.44, 71–84 (1982)Google Scholar
  33. [N]
    Norwood, F.: Every two generator knot is prime. Proc. Am. Math. Soc.86, 143–147 (1982)Google Scholar
  34. [R]
    Rolfsen, D.: Knots and links. Math. Lect. Note Series 7. Publish or Perish Inc., 1976Google Scholar
  35. [O]
    Orlik, P.: Seifert Manifolds. Lecture Notes in Mathematics 291, Berlin Heidelberg New York: Springer 1972Google Scholar
  36. [Sa1]
    Sakuma, M.: On strongly invertible knots. In: Algebraic and topological theories. Proc. Miyata Memorial Conf. Kinokuniya Co. Ltd., 1985Google Scholar
  37. [Sa 2]
    Sakuma, M.: Realization of the symmetry groups of links. In: Transformation groups. Lect. Notes in Math. 1375, pp. 291–306. Berlin Heidelberg New York: Springer 1989Google Scholar
  38. [Sl]
    Scharlemann, M.: Tunnel number one knots satisfy the Poenaru conjecture. Topology Appl.18, 235–258 (1984)Google Scholar
  39. [Sr]
    Schreier, O.: Über die GruppenA a B b=1. Abh. Math. Semin. Univ. Hamb.3, 167–169 (1924)Google Scholar
  40. [Su]
    Schubert, H.: Knoten mit zwei Brücken. Math. Z.65, 133–170 (1956)Google Scholar
  41. [Ts]
    Takahashi, M.: Two-bridge knots have PropertyP. Memoirs Am. Math. Soc.29 (1981)Google Scholar
  42. [Tc]
    Takeuchi, Y.: The untangling theorem. Topology Appl.34, 129–137 (1990)Google Scholar
  43. [Th]
    Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc.19, 417–431 (1988)Google Scholar
  44. [U]
    Uchida, Y.: Detecting inequivalent of the unknotting tunnels for a two-bridge knot. PreprintGoogle Scholar
  45. [Z]
    Zieschang, H.: Generators of the free product with amalgamation of two infinite cyclic groups. Math. Ann.277, 195–221 (1977)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Kanji Morimoto
    • 1
  • Makoto Sakuma
    • 2
  1. 1.Department of MathematicsTakushoku UniversityTokyoJapan
  2. 2.Department of Mathematics, College of General EducationOsaka UniversityOsakaJapan

Personalised recommendations