Advertisement

Mathematische Annalen

, Volume 283, Issue 2, pp 329–332 | Cite as

Immersed hypersurfaces with constant Weingarten curvature

  • Klaus Ecker
  • Gerhard Huisken
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caffarelli, L., Nirenberg, L., Spruck, J.: Nonlinear second order elliptic equations IV, Starshaped compact Weingarten hypersurfaces. Current topics in partial differential equations. Y. Ohya, K. Kasahara, N. Shimakura (eds.), pp 1–26. Tokyo: Kinokunze 1986Google Scholar
  2. 2.
    Cartan, E.: Families de surfaces isoparamétrique dans les espaces à courbure constante. Ann. Mat. Pura Appl.17, 177–191 (1938)Google Scholar
  3. 3.
    Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 247, 81–93 (1980)Google Scholar
  4. 4.
    Garding, L.: An inequality for hyperbolic polynomials. J. Math. Mech.8, 957–965 (1959)Google Scholar
  5. 5.
    Korevaar, N.J.: Sphere theorems via Alexandrov for constant Weingarten curvature hypersurfaces — Appendix to a note of A. Ros. J. Differ. Geom.27, 221–223 (1988)Google Scholar
  6. 6.
    Lawson, H.B., Jr.: Local rigidity theorems for minimal hypersurfaces. Ann. Math.89, 187–197 (1969)Google Scholar
  7. 7.
    Mitrinovic, D.S.: Analytic inequalities. Grundlehren der Math. Wissenschaften. Berlin Heidelberg New York: Springer 1970Google Scholar
  8. 8.
    Nomizu, K., Smyth, B.: A formula of Simons' type and hypersurfaces with constant mean curvature. J. Differ. Geom.3, 367–377 (1969)Google Scholar
  9. 9.
    Ros, A.: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differ. Geom.27, 215–220 (1988)Google Scholar
  10. 10.
    Walter, R.: Compact hypersurfaces with a constant higher mean curvature function. Math. Ann.270, 125–145 (1985)Google Scholar
  11. 11.
    Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math.121, 193–243 (1986)Google Scholar
  12. 12.
    Yau, S.T.: Submanifolds with constant mean curvature, I, II. Am. J. Math.96, 346–366 (1974);97, 76–100 (1975)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Klaus Ecker
    • 1
  • Gerhard Huisken
    • 2
  1. 1.Centre for Mathematical AnalysisAustralian National UniversityCanberraAustralia
  2. 2.Department of MathematicsR.S. Phys. S. Australian National UniversityCanberraAustralia

Personalised recommendations