Advertisement

Mathematische Annalen

, Volume 48, Issue 1–2, pp 49–74 | Cite as

Concerning transcendentally transcendental functions

  • Eliakim Hastings Moore
Article

Keywords

Transcendental Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Mr. Weber (in his memoir:Die allgemeinen Grundlagen der Galois'schen Gleichungstheorie; Mathematische Annalen, vol. 43, pp. 521–549, November, 1893 —and in his book:Lehrbuch der Algebra, vol. 1, pp. 441–460, 1895) denotes by the termKörper any closed system whatever of say (Grössen, Elemente or, as I prefer)marks capable of combination without ambiguity by addition, subtraction, multiplication and division (division by 0 alone excluded) in accordance with the ordinaryoperational identities of algebra. I propose the termfield as the English equivalent toKörper. [Indeed thefield of my paper:A doubly infinite system of simple groups: presented August 25, 1893 to the Chicago Congress on Mathematics was exactly Mr. Weber'sendlicher Körper].Google Scholar
  2. Kronecker's term isRationalitätsbereich (realm of rationality). Mr. Weber (Algebra, vol. I, p. 452) proposes to use this term instead of Körper (field) only when in a particular investigation the marks of the field are to be considered as known or rational. This is surely a desirable usage, and I follow it in using in these papers:Concerning transcendentally transcendental functions: the term realm of rationality.Google Scholar
  3. For the fundamental theorems concerning forms one may consult § 3 of Mr. Weber's memoir cited above.Google Scholar
  4. See, for instance, for ϕ(x), Stäckel: Zur Theorie der eindeutigen analytischen Functionen; Journal für die reine und angewandte Mathematik, vol. 112, pp. 262–264, 1893.Google Scholar
  5. Jacobi: Ueber die Differentialgleichung, welcher die Reihen\(1 \pm 2q + 2q^4 \pm 2q^9 + etc.,2\sqrt[4]{q} + 2\sqrt[4]{{q^9 }} + 2\sqrt[4]{{q^{25} }} + etc.\) Genüge leisten; Journal für die reine und angewandte Mathematik, vol. 36, pp. 97–112, 1834, or Gesammelte Werke, vol. II, pp. 173–190.Google Scholar
  6. Communicated to Mr. Schwarz by Kronecker in 1863. Schwarz: Ueber diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. Journal für die reine und angewandte Mathematik, vol. 75, pp. 292–335, 1873, or Gesammelte Mathematische Abhandlungen, vol. II, p. 211–259. (See page 241.)Google Scholar
  7. Méray: Sur l'impossibilité de franchir par la formule de Taylor les cercles de convergence de certaines séries entières: Bulletin des Sciences mathématiques, series 2, vol. 12, pp. 248–252, 1888.Google Scholar

Copyright information

© Springer-Verlag 1896

Authors and Affiliations

  • Eliakim Hastings Moore
    • 1
  1. 1.Chicago

Personalised recommendations