Advertisement

Mathematische Annalen

, Volume 304, Issue 1, pp 489–515 | Cite as

Moduli-stacks for bundles on semistable curves

  • Gerd Faltings
Article

Keywords

Semistable Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    M. Artin, Algebraic approximation of structures over complete local rings. Math. IHES36 (1969), 23–58Google Scholar
  2. [CF]
    C.L. Chai and G. Faltings, Degeneration of abelian varieties. Springer Verlag Berlin (1990)Google Scholar
  3. [DM]
    P. Deligne and D. Mumford, The irreducibility of the space of curves of a given genus. Math. IHES36 (1969), 75–109Google Scholar
  4. [Fa1]
    G. Faltings, StableG-bundles and projective connections. J. Alg. Geometry2 (1993), 507–568Google Scholar
  5. [Fa2]
    G. Faltings, A proof for the Verlinde formula. J. Alg. Geometry3 (1994), 347–374Google Scholar
  6. [HN]
    G. Harder and N. Narasimhan, On the cohomology-groups of moduli-spaces of vector bundles on curves. Math. Ann.212 (1975), 215–248Google Scholar
  7. [KKMS]
    G. Kempf, F. Knudson, D. Mumford and D. Saint-Donat, Toroidal Embeddings I. Springer Lecture Notes339 (1973)Google Scholar
  8. [La]
    S. Langton, Valuative criteria for families of vector bundles on algebraic varieties. Ann. Math.101 (1975), 88–110Google Scholar
  9. [Lau]
    G. Laumon, Champs algébriques. Paris-Orsay, Preprint (1988)Google Scholar
  10. [Se]
    J.P. Serre, Cohomologie galoisienne. Springer Lecture Notes5 (1973)Google Scholar
  11. [S]
    C.S. Seshadri, Space of unitary vector bundles on a compact Riemann surface. Ann. Math.85 (1967), 303–336Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Gerd Faltings
    • 1
  1. 1.Max-Planck-Institut für MathematikBonnGermany

Personalised recommendations