Mathematische Annalen

, Volume 304, Issue 1, pp 457–480

The classification of nonsimple algebraic tangles

  • Ying-Qing Wu

Mathematics Subject Classification (1991)

57N10 57M25 57M50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, C., Reid, A.: Quasi-Fuchsian surfaces in hyperbolic knot complements, J. Austral. Math. Soc., (series A)55 (1993), 116–131Google Scholar
  2. 2.
    Bonahon, F., Siebenmann, L.: Geometric splitting of knots, and Conway's algebraic knots, (preprint)Google Scholar
  3. 3.
    Burde, G., Ziechang, H.: Knots, de Gruyter Studies in Math.5, Walter de Gruyter 1985Google Scholar
  4. 4.
    Conway, J.: An enumeration of knots and links, and some of their algebraic properties. Computational problems in abstract algebra, pp. 329–358, New York and Oxford: Pergamon 1970Google Scholar
  5. 5.
    Eudave-Muñoz, M.: Primeness and sums of tangles, Trans. Amer. Math. Soc.306, 773–790 (1988)Google Scholar
  6. 6.
    Hatcher, A., Thurston, W.: Incompressible surfaces in 2-bridge knot complements, Invent. Math.79, 225–246 (1985)Google Scholar
  7. 7.
    Jaco, W.: Lectures on three-manifold topology, Regional conference series in mathematics43, (1980)Google Scholar
  8. 8.
    Myers, R.: Simple knots in compact orientable 3-manifolds, Trans. Amer. Math. Soc.273, 75–91 (1982)Google Scholar
  9. 9.
    Oertel, U.: Closed incompressible surfaces in complements of star links, Pacific J. Math.111, 209–230 (1984)Google Scholar
  10. 10.
    Ruberman, D.: Seifert surfaces of knots inS 4. Pac. J. Math.145, 97–116 (1990)Google Scholar
  11. 11.
    Scharlemann, M.: Producing reducible 3-manifolds by surgery on a knot, Topology29, 481–500 (1990)Google Scholar
  12. 12.
    Thurston, W.: The Geometry and Topology of 3-manifolds, lecture notes, 1992 Berkeley editionGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Ying-Qing Wu
    • 1
  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA
  2. 2.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations