Mathematische Annalen

, Volume 304, Issue 1, pp 339–362

A construction of hyperbolic hypersurface of Pn(C)

  • Kazuo Masuda
  • Junjiro Noguchi
Article

Mathematics Subject Classification (1991)

32H20 32H15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AS1]
    Y. Adachi and Masakazu Suzuki, On the family of holomorphic mappings into projective space with lacunary hypersurfaces, J. Math. Kyoto Univ.30, (1990), 451–459 (1990)Google Scholar
  2. [AS2]
    Y. Adachi and Masakazu Suzuki, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. Symp. Pure Math.52, Vol. 2, pp. 41–51, Amer. Math. Soc., Providence, Rhode Island, 1991Google Scholar
  3. [AzS]
    K. Azukawa and Masaaki Suzuki, Some examples of algebraic degeneracy and hyperbolic manifolds, Rocky Mountain J. Math.10, 655–659 (1980)Google Scholar
  4. [B]
    R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc.235, 213–219 (1978)Google Scholar
  5. [BG]
    R. Brody and M. Green, A family of smooth hyperbolic hypersurfaces inP 3, Duke Math. J.44, 873–874 (1977)Google Scholar
  6. [BM]
    E. Bombieri and J. Mueller, The generalized equation in function fields, J. Number Theory39, 339–350 (1991)Google Scholar
  7. [C]
    H. Cartan, Sur les zéros des combinaisons linéaires dep fonctions holomorphes données, Mathematica7, 5–31 (1933)Google Scholar
  8. [F]
    G. Faltings, Diophantine approximation on Abelian varieties, Ann. Math.133, 549–576 (1991)Google Scholar
  9. [G]
    H. Grauert, Jetmetriken und hyperbolische Geometrie, Math. Z.200, 149–168 (1989)Google Scholar
  10. [K1]
    S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.Google Scholar
  11. [K2]
    S. Kobayashi, Intrinsic distances, measures, and geometric function theory, Bull. Amer. Math. Soc.,82, 357–416 (1976)Google Scholar
  12. [L1]
    S. Lang, Higher dimensional Diophantine problems, Bull. Amer. Math. Soc.80, 779–787 (1974)Google Scholar
  13. [L2]
    S. Lang, Hyperbolic and Diophantine analysis, Bull. Amer., Math. Soc.14, 159–205 (1986)Google Scholar
  14. [L3]
    S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York-Berlin-Heidelberg, 1987Google Scholar
  15. [N]
    A. Nadel, Hyperbolic surfaces inP 3. Duke Math. J.58, 749–771 (1989)Google Scholar
  16. [No1]
    J. Noguchi, Hyperbolic manifolds and Diophantine geometry, Sugaku Expositions,4, pp. 63–81, Amer. Math. Soc., Providence, Rhode Island, 1991Google Scholar
  17. [No2]
    J. Noguchi, Meromorphic mappings into compact hyperbolic complex spaces and geometric Diophantine problem, Internat. J. Math.3, 277–289 (1992)Google Scholar
  18. [No3]
    J. Noguchi, Some problems in value distribution and hyperbolic manifolds, Proc. International Symp., Holomorphic Mappings, Diophantine Geometry and Related Topics in Honor of Prof. S. Kobayashi, pp. 66–79, RIMS. Kyoto Univ., October 26–30, 1992Google Scholar
  19. [No4]
    J. Noguchi, Some topics in Nevanlinna theory, hyperbolic manifolds and Diophantine geometry, Geometry and Analysis on Complex Manifolds, Festschrift for S. Kobayashi, eds. T. Mabuchi, J. Noguchi, and T. Ochiai, pp. 140–145, World Sci. Publ., Singapore, 1994.Google Scholar
  20. [No5]
    J. Noguchi, Nevanlinna-Cartan theory over function fields and a Diophantine equation, preprintGoogle Scholar
  21. [NO]
    J. Noguchi and T. Ochiai, Geometric Function Theory in Several Complex Variables, Transl. Math. Mono.80, Amer. Math. Soc., Providence, Rhode, Island, 1990Google Scholar
  22. [RW]
    M. Ru and P.M. Wong, Integral points ofP n(C)−{2n+1 hyperplanes in general position}, Invent. Math.106, 195–216 (1991)Google Scholar
  23. [V]
    P. Vojta, Diophantine Approximations and Value Distribution Theory, Lecture Notes in Math.1239, Springer-Verlag, Berlin-Heidelberg-New York, 1987Google Scholar
  24. [W]
    P.M. Wong, Recent results in hyperbolic geometry and Diophantine geometry, International Symposium, Holomorphic Mappings, Diophantine Geometry and Related Topics, R.I.M.S. Lect. Notes Ser.819, pp. 120–135, R.I.M.S., Kyoto University, 1993Google Scholar
  25. [Z1]
    M.G. Zaidenberg, Stability of hyperbolic imbeddedness and construction of examples, Math. USSR Sbornik63, 351–361 (1989)Google Scholar
  26. [Z2]
    M.G. Zaidenberg, Hyperbolicity in projective spaces, International Symposium, Holomorphic Mappings, Diophantine Geometry and Related Topics, R.I.M.S. Lect. Notes Ser.819, pp. 136–156, R.I.M.S., Kyoto University, 1993Google Scholar
  27. [ZL]
    M.G. Zaidenberg and V.Ya. Lin, Finiteness theorems for holomorphic maps, Several Complex Variables III, Encyclopeadia Math. Sci.9, pp. 113–172, Springer-Verlag, Berlin-Heidelberg-New York, 1989Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Kazuo Masuda
    • 1
  • Junjiro Noguchi
    • 1
  1. 1.Department of MathematicsTokyo Institute of TechnologyTokyo 152Japan

Personalised recommendations