Mathematische Annalen

, Volume 304, Issue 1, pp 277–291

The action of conformal transformations on a Riemannian manifold

  • Jacqueline Ferrand
Article

Mathematics Subject Classification (1991)

53A30 53C10 57S05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    D.V. Alekseevskii, Groups of transformations of Riemannian spaces. Mat. Sbornik89 (131) (1972) no 2 and Math. USSR Sbornik18 (1972) no 2, 285–301Google Scholar
  2. [A2]
    D.V. Alekseevskii, Uspehi Mat. Nauk28 (1973) no 5, 225–226 (Russian)Google Scholar
  3. [B]
    N. Bourbaki, Topologie Générale Ch III. Hermann ParisGoogle Scholar
  4. [F1]
    J. Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes. Mem. Acad. Royale de Belgique 39 no 5 (1971) 1–44; summed up in C.R.A.S. Paris269 (1969) 583–586Google Scholar
  5. [F2]
    J. Lelong-Ferrand, Invariants conformes globaux sur les variétés riemanniennes. J. Diff. Geo.8 (1973), 487–510; summed up in C.R.A.S. Paris275 (1972) 119–122Google Scholar
  6. [F3]
    J. Lelong-Ferrand, Construction de modules de continuité dans le cas limite de Soboleff et applications à la géométrie différentielle. Arch. for Rat. Mech. and An. 52, no 4 (1973) 297–311; summed up in C.R.A.S. Paris, 276–300Google Scholar
  7. [F4]
    J. Lelong-Ferrand, Geometrical interpretation of scalar curvature and regularity of conformal homeomorphisms. Differential geometry and relativity. D. Reidel, Dordrecht 1976, 91–105Google Scholar
  8. [F5]
    J. Lelong-Ferrand, Regularity of conformal mappings of Riemannian manifolds. Proc. Romanian Finnish Seminar Bucharest 1976, Lecture Notes no 743 (1979), Springer-Verlag, 197–203Google Scholar
  9. [F6]
    J. Lelong-Ferrand, Sur un lemme d'Aleksevskii relatif aux transformations conformes. C.R.A.S. Paris,284 (1977) 121–123Google Scholar
  10. [F7]
    J. Ferrand, Le groupe des automorphismes conformes d'une variété de Finsler compacte. C.R.A.S. Paris291 (1980) 209–210Google Scholar
  11. [F8]
    J. Ferrand, Conformal capacities and conformally invariant functions on Riemannian manifolds (to appear in Geometriae Dedicata). Summed up in C.R.A.S. Paris t. 218 Série I (1994) 213–216Google Scholar
  12. [F9]
    J. Ferrand, Convergence and degeneration of quasiconformal maps of Riemannian manifolds (to appear,in J. Analyse Math.)Google Scholar
  13. [G]
    K.R. Gutschera, Invariant metrics for groups of conformal transformations (preprint)Google Scholar
  14. [KN]
    S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience publishers, London 1963Google Scholar
  15. [Ku]
    N.H. Kuiper, On conformally-flat spaces in the large. Ann. Math.50 (1949) 916–924Google Scholar
  16. [L]
    J. Lafontaine, The theorem of Lelong-Ferrand and Obata. Conformal geometry, Ed. by S. Kulkarni and U. Pinkall, Max Planck Inst. für Math. Bonn (1988)Google Scholar
  17. [M]
    G.D. Mostow, Quasiconformal mappings inn-space and the rigidity of hyperbolic space forms. Inst Hautes Etudes Sci. Publi. Math.34 (1968) 53–104Google Scholar
  18. [MS]
    S.B. Myers and N. Steenrod, The group of isometries of a Riemannian manifold. Ann. Math.40 (1939) 400–416Google Scholar
  19. [O1]
    M. Obata, Conformal transformations of Riemannian manifolds. J. Diff. Geo.6 (1971) 247–258Google Scholar
  20. [O2]
    M. Obata, The conjectures about conformal transformations. J. Diff. Geo.6 (1971) 247–258Google Scholar
  21. [P]
    P. Pansu, Distances conformes et cohomologieL n. Publ. Math. Université Pierre et Marie Curie, Paris, no 92 (Géometrie Riemannanienne conforme) (1990) 69–77Google Scholar
  22. [Va]
    J. Väisälä, Lectures onn-dimensional quasiconformal mappings. Lecture Notes in Math. Vol. 229, Springer-Verlag 1971Google Scholar
  23. [Vu]
    M. Vuorinen, Conformal geometry and quasiregular mappings. Lecture Notes in Math. Vol. 1319, Springer-Verlag 1988Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Jacqueline Ferrand
    • 1
  1. 1.SceauxFrance

Personalised recommendations