Mathematische Annalen

, Volume 306, Issue 1, pp 737–742 | Cite as

Weak amenability and semidirect products in simple Lie groups

  • Brian Dorofaeff

Mathematics Subject Classification (1991)

22D99 43A22 43A80 46J10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bozejko, M., Picardello, M.A.: Weakly amenable groups and amalgamated products. Proc. Am. Math. Soc.117(4) 1039–1046 (1993)Google Scholar
  2. Cowling, M.: Rigidity for lattices in semisimple Lie groups: von Neumann algebras and ergodic actions. Rend. Semin. Math. Torino47 1–37 (1989)Google Scholar
  3. Cowling, M., Haagerup, U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math.96, 507–549 (1989)Google Scholar
  4. De Cannière J. and Haagerup U.: Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Am. J. Math.107 455–500 (1985)Google Scholar
  5. Dorofaeff, B.: The Fourier algebra ofSl(2, ℝ) ⋊ ℝn,n ≥ 2 has no multiplier bounded approximate unit. Math. Ann.297 707–724 (1993)Google Scholar
  6. Dorofaeff, B.: An Invariant Associated With Completely Bounded Approximate Units on the Fourier Algebra of a Lie Group. Uni. New South Wales: Ph.D. Thesis 1995Google Scholar
  7. Eymard, P.: L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. Fr.92 181–236 (1964)Google Scholar
  8. Haagerup, U.: GroupC *-algebras without the completely bounded approximation property. (Preprint 1986)Google Scholar
  9. Lemvig Hansen, M.: Weak amenability of the universal covering group ofSU(1,n). Math. Ann.288 445–472 (1990)Google Scholar
  10. Mostow, G.D.: The extensibility of local Lie groups of transformations and groups on surfaces. Ann. of Math.52, 606–636 (1950)Google Scholar
  11. Paulsen, V.I.: Completely Bounded Maps and Dilations. (Pitman Res. Notes Math. 146) Essex: Longman 1986Google Scholar
  12. Pier, J-P.: Amenable Locally Compact Groups. New York: Wiley-Interscience 1984Google Scholar
  13. Szwarc, R.: Groups acting on trees and approximation properties of the Fourier algebra. J. Func. Anal.95 320–343 (1991)Google Scholar
  14. Varadarajan, V.S.: Lie Groups, Lie Algebras and Their Representations. Englewood Cliffs New Jersey: Prentice Hall 1974Google Scholar
  15. Valette, A.: Weak amenability of right-angled Coxeter groups. Proc. Am. Math. Soc.119, 1331–1334 (1993)Google Scholar
  16. Wang, S.P.: The dual space of semi-simple Lie groups. Am. J. Math.91 921–937 (1969)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Brian Dorofaeff
    • 1
  1. 1.School of MathematicsUniversity of New South WalesSydneyAustralia

Personalised recommendations