Mathematische Annalen

, Volume 306, Issue 1, pp 737–742 | Cite as

Weak amenability and semidirect products in simple Lie groups

  • Brian Dorofaeff
Article

Mathematics Subject Classification (1991)

22D99 43A22 43A80 46J10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bozejko, M., Picardello, M.A.: Weakly amenable groups and amalgamated products. Proc. Am. Math. Soc.117(4) 1039–1046 (1993)Google Scholar
  2. Cowling, M.: Rigidity for lattices in semisimple Lie groups: von Neumann algebras and ergodic actions. Rend. Semin. Math. Torino47 1–37 (1989)Google Scholar
  3. Cowling, M., Haagerup, U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math.96, 507–549 (1989)Google Scholar
  4. De Cannière J. and Haagerup U.: Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Am. J. Math.107 455–500 (1985)Google Scholar
  5. Dorofaeff, B.: The Fourier algebra ofSl(2, ℝ) ⋊ ℝn,n ≥ 2 has no multiplier bounded approximate unit. Math. Ann.297 707–724 (1993)Google Scholar
  6. Dorofaeff, B.: An Invariant Associated With Completely Bounded Approximate Units on the Fourier Algebra of a Lie Group. Uni. New South Wales: Ph.D. Thesis 1995Google Scholar
  7. Eymard, P.: L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. Fr.92 181–236 (1964)Google Scholar
  8. Haagerup, U.: GroupC *-algebras without the completely bounded approximation property. (Preprint 1986)Google Scholar
  9. Lemvig Hansen, M.: Weak amenability of the universal covering group ofSU(1,n). Math. Ann.288 445–472 (1990)Google Scholar
  10. Mostow, G.D.: The extensibility of local Lie groups of transformations and groups on surfaces. Ann. of Math.52, 606–636 (1950)Google Scholar
  11. Paulsen, V.I.: Completely Bounded Maps and Dilations. (Pitman Res. Notes Math. 146) Essex: Longman 1986Google Scholar
  12. Pier, J-P.: Amenable Locally Compact Groups. New York: Wiley-Interscience 1984Google Scholar
  13. Szwarc, R.: Groups acting on trees and approximation properties of the Fourier algebra. J. Func. Anal.95 320–343 (1991)Google Scholar
  14. Varadarajan, V.S.: Lie Groups, Lie Algebras and Their Representations. Englewood Cliffs New Jersey: Prentice Hall 1974Google Scholar
  15. Valette, A.: Weak amenability of right-angled Coxeter groups. Proc. Am. Math. Soc.119, 1331–1334 (1993)Google Scholar
  16. Wang, S.P.: The dual space of semi-simple Lie groups. Am. J. Math.91 921–937 (1969)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Brian Dorofaeff
    • 1
  1. 1.School of MathematicsUniversity of New South WalesSydneyAustralia

Personalised recommendations