Mathematische Annalen

, Volume 306, Issue 1, pp 341–352

Actions of discrete groups on nonpositively curved spaces

  • Michael Kapovich
  • Bernhard Leeb
Article

Mathematics Subject Classification (1991)

20F32 51K10 53C15 57M50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba1] W. Ballmann: Lectures on spaces of nonpositive curvature, DMV-Seminar vol. 25, Birkhäuser 1995.Google Scholar
  2. [Ba2] W. Ballmann: Singular spaces of nonpositive curvature, In: E. Ghys and P. de la Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov, Birkhäuser 1990., pp. 189–201.Google Scholar
  3. [BGS] W. Ballmann, M. Gromov, V. Schroeder: Manifolds of nonpositive curvature, Birkhäuser 1985.Google Scholar
  4. [Bi] J. Birman: Braids, links and mapping class groups, Annals of Math. Stud.82, Princeton University Press, 1974.Google Scholar
  5. [BLM] J. Birman, A. Lubotzky, J. McCarthy: Abelian and solvable subgroups of the mapping class groups, Duke Math. Journal50 (1983) 1107–1120.Google Scholar
  6. [BH] M. Bridson and A. Haefliger:CAT (0)-spaces, in preparation.Google Scholar
  7. [BK1] S. Buyalo, V. Kobelski: Geometrization of graphmanifolds: conformal states, POMI Preprint no. 7, July 1994. To appear in St. Petersburg Math. J.Google Scholar
  8. [BK2] S. Buyalo, V. Kobelski: Geometrization of graphmanifolds: isometric states, POMI Preprint no. 8, October 1994. To appear in St. Petersburg Math. J.Google Scholar
  9. [EE] J. Earle, J. Eells: The diffeomorphism group of a compact Riemann surface, Bull. of AMS73 (1967) 557–559.Google Scholar
  10. [E] P. Eberlein: A canonical form for compact nonpositively curved manifolds whose fundamental groups have nontrivial center, Math. Ann.260, (1982), vol. 1, 23–29.Google Scholar
  11. [Ge1] S. Gersten: The automorphism group of free group is not aCAT (0)-group, University of Utah, Preprint.Google Scholar
  12. [Ge2] S. Gersten: Bounded cocycles and combings of groups. Int. J. of Algebra and Computation.2, no. 3 (1992), 307–326.Google Scholar
  13. [GW] D. Gromoll, J. Wolf: Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77, vol.4 (1971), 545–552.Google Scholar
  14. [He] J. Hempel: 3-manifolds, Annals of Math. Studies, Vol.86, Princeton University Press, 1976.Google Scholar
  15. [KL1] M. Kapovich, B. Leeb: Asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, Geometric and Functional Analysis5 (3) (1995), 582–603.Google Scholar
  16. [KL2] M. Kapovich, B. Leeb: On actions of discrete groups on nonpositively curved spaces, MSRI-preprint 059-94, 1994.Google Scholar
  17. [KL3] M. Kapovich, B. Leeb: On quasi-isometries of graph manifold groups, preprint 1994.Google Scholar
  18. [KlL] B. Kleiner, B. Leeb: Rigidity of quasi-isometries for symmetric spaces of higher rank, preprint 1995.Google Scholar
  19. [Ko] K. Kodaira: A certain type of irregular algebraic surfaces, J. d'Anal. Math.19 (1967) 207–215.Google Scholar
  20. [LY] H. B. Lawson, S. T. Yau: On compact manifolds of nonpositive curvature, J. Diff. Geom.7 (1972), 211–238.Google Scholar
  21. [L1] B. Leeb: 3-manifolds with(out) metrics of nonpositive curvature, PhD Thesis, University of Maryland, 1992.Google Scholar
  22. [L2] B. Leeb: 3-manifolds with(out) metrics of nonpositive curvature, Invent. Math.122(2) (1995), 277–289.Google Scholar
  23. [Me] G. Mess: Unit tangent bundle subgroups of the mapping class group, MSRI-preprint 05708-90, 1990.Google Scholar
  24. [Sc] P. Scott: The geometries of 3-manifolds. Bull. London Math. Soc.15 (1983), 404–487.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Michael Kapovich
    • 1
  • Bernhard Leeb
    • 2
  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Mathematisches InstitutUniversität BonnBonnGermany

Personalised recommendations