Mathematische Annalen

, Volume 306, Issue 1, pp 257–283 | Cite as

Pseudo-représentations

  • Louise Nyssen
Article

Mathematics Subject Classification (1991)

13J15 16J99 20C20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [B.III] N. Bourbaki: Algèbre commutative, chapitre 3. Hermann, 1962Google Scholar
  2. [B.IX] N. Bourbaki: Algèbre commutative, chapitre 9. Masson, 1983Google Scholar
  3. [Ca] H. Carayol: Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, publication de l'IRMA, ULP StrasbourgGoogle Scholar
  4. [Gr] A. Grothendieck: Dix exposés sur la cohomologie des schémas. Advanced Studies in Pure Mathematics, 1968, pp. 46–66Google Scholar
  5. [J] N. Jacobson: Basic Algebra II. San Fransisco, W.H. Freeman and Company, 1980Google Scholar
  6. [Ka] I. Kaplansky: Fields and Rings. Chicago Lectures in Math., 1972Google Scholar
  7. [K-O] M.-A. Knuss, M. Ojanguren: Théorie de la descente et algèbres d'Azumaya. Springer Lecture Notes in Math. 389, 1974Google Scholar
  8. [La] S. Lang: Algebra. Reading, Addison-Wesley, 1984Google Scholar
  9. [Lo] J.-L. Loday: Cyclic Homology. Grundlehren der mathematischen wissenschaften 301, 1992Google Scholar
  10. [M] B. Mazur: Deforming Galois representations in “Galois groups over ℚ” pp. 385–437. MSRI publications 16, Springer Verlag, 1989Google Scholar
  11. [P] C. Procesi: Invariant Theory of N×N Matrices. Advances-in-Mathematics, 1976, t. 19n 0 3, pp. 306–381Google Scholar
  12. [R] R. Rouquier: Caractérisation des caractères et pseudo-représentations. ens, en préparationGoogle Scholar
  13. [S] K. Saito: Representation varieties of a finitely generated group intoSL 2 orGL 2. preprint RIMS Kyoto UniversityGoogle Scholar
  14. [Sch] M. Schlessinger: Functors on Artin rings. Trans. A.M.S., t. 130, 1968, 208–222Google Scholar
  15. [T] R. Taylor: Galois Representations associated to Siegel Modular forms of low Weight. Duke Math. Journal, t. 63n o 2, 1991, pp. 281–332Google Scholar
  16. [W] A. Wiles: On ordinary λ-adic Representation Associated to Modular Forms. Invent. Math. 94, 1988, pp. 529–573Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Louise Nyssen
    • 1
  1. 1.IRMAUniversité Louis PasteurStrasbourgFrance

Personalised recommendations