Mathematische Annalen

, Volume 291, Issue 1, pp 591–606

Bounded mean oscillation of Bloch pull-backs

  • Wade Ramey
  • David Ullrich
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Ahern, P.: On the behavior near a torus of functions holomorphic in the ball. Pac. J. Math.107, 267–278 (1983)Google Scholar
  2. [AR] Ahern, P., Rudin, W.: Bloch functions,BMO, and boundary zeros. Indiana Univ. Math. J.36, 131–148 (1987)Google Scholar
  3. [CC] Choa, J., Choa, B.R.: Composition with a homogeneous polynomial. (Preprint)Google Scholar
  4. [C] Choe, B.R.: Cauchy integral equalities and applications. Trans. Am. Math. Soc.315, 337–352 (1989)Google Scholar
  5. [CRW] Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math.103, 611–635 (1976)Google Scholar
  6. [D] Duren, P.: Theory ofH p-spaces. New York: Academic Press 1970Google Scholar
  7. [G] Garnett, J.: Bounded analytic functions. New York: Academic Press 1981Google Scholar
  8. [K] Krantz, S.: Function theory of several complex variables. New York: Wiley 1982Google Scholar
  9. [P] Pommerenke, Ch.: On Bloch functions. J. Lond. Math. Soc.2, 689–695 (1970)Google Scholar
  10. [Ru] Rudin, W.: Function theory in the unit ball ofC n. Berlin Heidelberg New York: Springer 1980Google Scholar
  11. [Rus] Russo, P.: Boundary behavior ofBMOA(B n). Trans. Am. Math. Soc.292, 733–740 (1985)Google Scholar
  12. [St] Stanton, C.:H p andBMOA pullback properties of smooth maps. (Preprint)Google Scholar
  13. [S] Stein, E.M.: Singular integral integrals and estimates for the Cauchy-Riemann equations. Bull. Am. Math. Soc.79, 440–445 (1973)Google Scholar
  14. [T] Tomaszewski, B.: Interpolation by Lipschitz holomorphic functions. Ark. Mat.23, 327–338 (1985)Google Scholar
  15. [U] Ullrich, D.: Radial divergence inBMOA. (To appear)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Wade Ramey
    • 1
  • David Ullrich
    • 2
  1. 1.Department of MathematicsMichigan State UniversityEast LansingUSA
  2. 2.Department of MathematicsOklahoma State UniversityStillwaterUSA

Personalised recommendations