Mathematische Annalen

, Volume 291, Issue 1, pp 51–73

De Rham-Hodge-Kodaire decomposition in ∞-dimensions

  • Asao Arai
  • Itaru Mitoma
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arai, A.: A general class of infinite dimensional Dirac operators and path integral representation of their index. To be published in J. Funct. Anal.Google Scholar
  2. 2.
    Arai, A.: Path integral representation of the index of Kähler-Dirac operators on an infinite dimensional manifold. J. Funct. Anal.82, 330–369 (1989)Google Scholar
  3. 3.
    Arai, A.: On dimensional reduction of functional measure. J. Funct. Anal.77, 372–402 (1988)Google Scholar
  4. 4.
    Deift, P.A.: Applications of commutation formula. Duke Math. J.45, 267–310 (1978)Google Scholar
  5. 5.
    Jaffe, A., Lesniewski, A., Weitsman, J.: Index of a family of Dirac operators on loop space. Commun. Math. Phys.112, 75–88 (1987)Google Scholar
  6. 6.
    Hida, T.: Brownian motion. Berlin Heidelberg New York: Springer 1980Google Scholar
  7. 7.
    Hida, T., Potthoff, J., Streit, L.: Dirichlet forms and white noise analysis. Commun. Math. Phys.116, 235–245 (1988)Google Scholar
  8. 8.
    Kallianpur, G., Mitoma, I.: A Langevin-type stochastic differential equation on a space of generalized functionals. Technical Report No. 238, Univ. of North Carolina Chapel Hill 1988Google Scholar
  9. 9.
    Gelfand, I.M., Shilov, G.E.: Generalized functions 2. New York London: Academic Press 1964Google Scholar
  10. 10.
    Gelfand, I.M., Vilenkin, N.Ya.: Generalized functions 4. New York London: Academic Press 1964Google Scholar
  11. 11.
    Glimm, J., Jaffe, A.: Quantum physics. Berlin Heidelberg New York: Springer 1981Google Scholar
  12. 12.
    Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. Proc. International symp. S.D.E. Kyoto, Tokyo: Kinokuniya 1978Google Scholar
  13. 13.
    Nishikawa, S., Ramachandran, N., Tondeur, P.: The heat equation for Riemanian foliations. Trans. Am. Math. Soc.319, 619–630 (1990)Google Scholar
  14. 14.
    Potthoff, J.: On Meyer's equivalence. Nagoya Math. J.111, 99–109 (1988)Google Scholar
  15. 15.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Vol. 2. New York London: Academic Press 1972Google Scholar
  16. 16.
    Reed, M., Simon, B.: Methods of modern mathematical physics. Vol. 2. New York London: Academic Press 1975Google Scholar
  17. 17.
    Shigekawa, I.: De Rham-Hodge-Kodaira's decomposition on an abstract Wiener space. J. Math. Kyoto Univ.26, 191–202 (1986)Google Scholar
  18. 18.
    Simon, B.: TheP(φ)2 Euclidean (quantum) field theory. Princeton, NJ: Princeton Univ. Press 1974Google Scholar
  19. 19.
    Sugita, H.: Sobolev spaces of Wiener functionals and Malliavin calculus. J. Math. Kyoto Univ.25, 31–48 (1985)Google Scholar
  20. 20.
    Watanabe, S.: Lectures on stochastic differential equations and Malliavin's calculus. Berlin Heidelberg New York Tokyo: Springer 1984Google Scholar
  21. 21.
    Yosida, K.: Functional analysis. Berlin Heidelberg New York: Springer 1971Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Asao Arai
    • 1
  • Itaru Mitoma
    • 2
  1. 1.Department of MathematicsHokkaido UniversitySapporoJapan
  2. 2.Department of MathematicsSaga UniversitySagaJapan

Personalised recommendations