Mathematische Annalen

, Volume 291, Issue 1, pp 1–16 | Cite as

Integrated semigroups and differential operators onLp spaces

  • Matthias Hieber


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1] Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Isr. J. Math.59, 327–352 (1987).Google Scholar
  2. [A2] Arendt, W.: Sobolev imbeddings and integrated semigroups. Preprint 1990Google Scholar
  3. [A,K] Arendt, W., Kellermann, H.: Integrated solutions of Volterra integro-differential equations and applications. In: Da Prato, G., Iannelli, M. (eds.). Volterra integrodifferential equations in Banach spaces and applications. Proc. Conf. Trento 1987, 21–51, Pitman Res. Notes Math. Ser., 190. Harlow: Longman 1989Google Scholar
  4. [B, E] Balabane, M., Emamirad, H.A.:L p estimates for Schrödinger evolution equations. Trans. Am. Math. Soc.291, 357–373 (1985)Google Scholar
  5. [F, Stxxx] Fefferman, C., Stein, E.M.:H p spaces of several variables. Acta Math.129, 137–193 (1972).Google Scholar
  6. [G] Goldstein, J.A.: Semigroups of linear operators and applications. New York: Oxford University Press 1985Google Scholar
  7. [Hi1] Hieber, M.: Laplace transforms and α-times integrated semigroups. To appear in Forum Math.Google Scholar
  8. [Hi2] Hieber, M.: Integrated semigroups and the Cauchy problem for systems inL p-spaces. to appear in J. Math. Anal. Appl.Google Scholar
  9. [Hö1] Hörmander, L.: Estimates for translation invariant operators inL p spaces. Acta Math.104, 93–140 (1960)Google Scholar
  10. [Hö2] Hörmander, L.: The analysis of linear partial differential operators. I. Berlin Heidelberg New York: Springer 1984Google Scholar
  11. [K, Hi] Kellermann, H., Hieber, M.: Interated semigroups. J. Funct. Anal.84, 160–180 (1989)Google Scholar
  12. [La] Lanconelli, E.: Valutazioni inL p(ℝn) della soluzione del problema di Cauchy per l'equazione di Schrödinger. Boll. Un. Mat. Ital.4, 591–607 (1968)Google Scholar
  13. [Li] Littman, W.: The wave operator andL p-norms. J. Math. Mech.12, 55–68 (1963)Google Scholar
  14. [M1] Miyachi, A.: On some Fourier multipliers forH p(ℝn). J. Fac. Sci. Univ. Tokyo27, 157–179 (1980)Google Scholar
  15. [M2] Miyachi, A.: On some estimates for the wave equation inL p andH p. J. Fac. Sci. Univ. Tokyo27, 331–354 (1980)Google Scholar
  16. [M3] Miyachi, A.: On some singular Fourier multipliers. J. Fac. Sci. Univ. Tokyo28, 267–315 (1981)Google Scholar
  17. [N] Neubrander, F.: Integrated semigroups and their applications to the abstract Cauchy problem. Pacific J. Math.135, 111–155 (1988)Google Scholar
  18. [P] Peral, J.C.:L p estimates for the wave equation. J. Funct. Anal.36, 114–145 (1980)Google Scholar
  19. [Sj] Sjöstrand, S.: On the Riesz means of the solution of the Schrödinger equation. Ann. Scuola Norm. Sup. Pisa24, 331–348 (1970)Google Scholar
  20. [St] Stein, E.M.: Singular integrals and differentiability properties of functions. New Jersey: Princeton University Press 1970Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Matthias Hieber
    • 1
  1. 1.Mathematisches Institut der UniversitätTübingenFederal Republic of Germany

Personalised recommendations