Mathematische Annalen

, Volume 296, Issue 1, pp 453–479

Self-adjoint determinantal representations of real plane curves

  • Victor Vinnikov
Article

Mathematics Subject Classification (1991)

14H45 14M12 14H40 14K20 14P25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catanese, F.: Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications. Invent. Math.63, 433–465 (1981)Google Scholar
  2. 2.
    Cook, A.J., Thomas, A.D.: Line bundles and homogeneous matrices. Q. J. Math. Oxf., II. Ser.30, 423–429 (1979)Google Scholar
  3. 3.
    Dixon, A.C.: Note on the reduction of a ternary quartic to a symmetrical determinant. Proc. Camb. Phil. Soc.2, 350–351 (1900–1902)Google Scholar
  4. 4.
    Dubrovin, B.A.: Matrix finite zone operators. Contemporary probl. math. (Itogi Nauki i Techniki)23, 33–78 (1983) (Russian)Google Scholar
  5. 5.
    Dubrovin, B.A., Natanzon, S.M.: Real two-zone solutions of the sine-Gordon equation. Funct. Anal. Appl.16, 21–33 (1982)Google Scholar
  6. 6.
    Fay, J.D.: Theta functions on Riemann surfaces. Berlin Heidelberg New York: Springer 1973Google Scholar
  7. 7.
    Gohberg, I., Lancaster, P., Rodman, L.: Matrices and indefinite scalar products. Basel: Birkhäuser, 1983Google Scholar
  8. 8.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978Google Scholar
  9. 9.
    Gross, B.H., Harris, J.: Real algebraic curves. Ann. Sci. Ec. Norm. Supér., IV. Ser.14, 157–182 (1981)Google Scholar
  10. 10.
    Husemoller, D., Milnor, J.: Symmetric bilinear forms. Berlin Heidelberg New York: Springer 1973Google Scholar
  11. 11.
    Igusa, J.I.: Theta functions. Berlin Heidelberg New York: Springer 1972Google Scholar
  12. 12.
    Livšic, M.S.: Cayley-Hamilton theorem, vector bundles and divisors of commuting operators. Integral Equations Oper. Theory6, 250–273 (1983)Google Scholar
  13. 13.
    Natanzon, S.M.: Prymians of real curves and their applications to the effectivization of Schrödinger operators. Funct. Anal. Appl.23, 33–45 (1989)Google Scholar
  14. 14.
    Nuij, W.: A note on hyperbolic polynomials. Math. Scand.23, 69–72 (1968)Google Scholar
  15. 15.
    Rokhlin, V.A.: Complex topological characteristics of real algebraic curves. Russ. Math. Surv.33, 85–98 (1978)Google Scholar
  16. 16.
    Room, T.G.: The geometry of determinantal loci. Cambridge: Cambridge Univ. Press 1938Google Scholar
  17. 17.
    Vinnikov, V.: Determinantal representations of real cubics and canonical forms of corresponding triples of matrices. In: Mathematical theory of networks and systems, Fuhrmann, P.A., (ed.), Berlin Heidelberg New York: Springer 1984Google Scholar
  18. 18.
    Vinnikov, V.: Self-adjoint determinantal representations of real irreducible cubics. In: Operator theory and systems, Bart, H., Gohberg, I., Kaashoek, M.A. (eds.), Boston: Birkhäuser 1986Google Scholar
  19. 19.
    Vinnikov, V.: Complete description of determinantal representations of smooth irreducible curves. Lin. Alg. Appl.125, 103–140 (1989)Google Scholar
  20. 20.
    Vinnikov, V.: Elementary transformations of determinantal representations of algebraic curves. Linear Algebra Appl.135, 1–18 (1990)Google Scholar
  21. 21.
    Vinnikov, V.: Commuting nonselfadjoint operators and algebraic curves. Proceedings of the Workshop on Operator Theory and Complex Analysis (Sapporo, Japan, 1991), Boston: Birkhäuser 1992Google Scholar
  22. 22.
    Viro, O. Ya.: Progress in the topology of real algebraic varieties over the last six years. Russ. Math. Surv.41, 55–82 (1986)Google Scholar
  23. 23.
    Wall, C.T.C.: Nets of quadrics, and theta-characteristics of singular curves. Philos. Trans. R. Soc. Lond.,A 289, 229–269 (1978)Google Scholar
  24. 24.
    Weichold, G.: Über symmetrische Riemannsche Flächen. Z. Math. Phys.28, 321–354 (1883)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Victor Vinnikov
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Department of Theoretical MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations