Mathematische Annalen

, Volume 296, Issue 1, pp 179–190 | Cite as

A finiteness property an an automatic structure for Coxeter groups

  • Brigitte Brink
  • Robert B. Howlett


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4, 5, 6. Hermann, Paris, 1968Google Scholar
  2. 2.
    Cannon, J.W., Epstein, D.B., Holt, D.F., Paterson, M.S., Thurston, W.P.: Word Processing and Group Theory. University of Minnesota Supercomputer Institute (1991) (preprint)Google Scholar
  3. 3.
    Davis, M.W., Shapiro, M.D.: Coxeter groups are automatic. Ohio State University (1991) (preprint)Google Scholar
  4. 4.
    Dyer, M.J.: Hecke algebras and reflections in Coxeter groups. PhD thesis, University of Sydney, 1987Google Scholar
  5. 5.
    Gersten, S.M., Short, H.B.: Small cancellation theory and automatic groups. Invent. Math.102 (1990) 305–334Google Scholar
  6. 6.
    Hiller, H.: Geometry of Coxeter Groups. Pitman Advanced Publishing Program, 1981Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Brigitte Brink
    • 1
  • Robert B. Howlett
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations