Mathematische Annalen

, Volume 296, Issue 1, pp 63–68

Alternating group coverings of the affine line for characteristic greater than two

  • Shreeram S. Abhyankar
Article

Mathematics Subject Classification (1991)

12F10 14H30 20D06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    Abhyankar, S.S.: Local uniformization on algebraic surfaces over ground fields of characteristicp≠0. Ann. Math.63, 491–526 (1956)Google Scholar
  2. [A2]
    Abhyankar, S.S.: Coverings of algebraic curves. Amer. J. Math.79, 825–856 (1957)Google Scholar
  3. [A3]
    Abhyankar, S.S.: Ramification theoretic methods in algebraic geometry. Princeton: Princeton University Press 1959Google Scholar
  4. [A4]
    Abhyankar, S.S.: Algebraic geometry for scientists and engineers. Providence: Am. Math. Soc. 1990Google Scholar
  5. [A5]
    Abhyankar, S.S.: Galois theory on the line in nonzero characteristic. Bull. Am. Math. Soc.27, 68–133 (1992)Google Scholar
  6. [A6]
    Abhyankar, S.S.: Group enlargements. C.R. Acad. Sci., Paris312, 763–768 (1991)Google Scholar
  7. [A7]
    Abhyankar, S.S.: Wreath products and enlargements of groups. Discrete Math. (to appear)Google Scholar
  8. [A8]
    Abhyankar, S.S.: Linear disjointness of polynomials. Proc. Am. Math. Soc.116, 7–12 (1992)Google Scholar
  9. [AOS]
    Abhyankar, S.S., Ou, J., Sathaye, A.M.: Alternating group coverings of the affine line in characteristic two. (to appear)Google Scholar
  10. [AY]
    Abhyankar, S.S., Yie, I.: Small degree coverings of the affine line in characteristic two. (to appear)Google Scholar
  11. [DW]
    Dedekind, R., Weber, H.: Theorie der alg. Funktionen einer Veränderlichen. J. Reine Angew. Math.92, 181–290 (1882)Google Scholar
  12. [F]
    Forsyth, A.R.: Theory of functions of a complex variable. Cambridge: Cambridge University Press 1918Google Scholar
  13. [M]
    Marggraff, B.: Über primitive Gruppen mit transitiven Untergruppen geringeren Grades. Dissertation, Giessen (1892)Google Scholar
  14. [R]
    Riemann, B.: Theorie der Abelschen Funktionen. J. Reine Angew. Math.54, 115–155 (1857)Google Scholar
  15. [S]
    Serre, J-P.: Constuction de revêtments étales de la droite affine en caractéristiquep. C.R. Acad. Sci., Paris311, 341–346 (1990)Google Scholar
  16. [W]
    Wielandt, H.: Finite permutation groups. New York: Academic Press 1964Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Shreeram S. Abhyankar
    • 1
  1. 1.Mathematics DepartmentPurdue UniversityWest LafayetteUSA

Personalised recommendations