Mathematische Annalen

, Volume 293, Issue 1, pp 579–594 | Cite as

Bounds for stable bundles and degrees of Weierstrass schemes

  • F. Catanese
  • M. Schneider
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bog]
    Bogomolov, F.A.: Holomorphic tensors and vector bundles on projective varieties. Math. USSR. Izv.13, 499–555 (1979)Google Scholar
  2. [Cor]
    Corti, A.: Polynomial bounds for the number of automorphisms of a surface of general type. Ann. Ec. Norm. Supér.24, 113–137 (1991)Google Scholar
  3. [De]
    Demailly, J.P.: A numerical criterion for very ample line bundles. J. Differ. Geom. (to appear)Google Scholar
  4. [D-P-S]
    Demailly, J.P., Peternell, T., Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. (Preprint 1991)Google Scholar
  5. [E-F]
    Elencwajg, G., Forster, O.: Bounding cohomology groups of vector bundles on ℙn. Math. Ann.246, 251–270 (1980)Google Scholar
  6. [Fl]
    Flenner, H.: Restrictions of semistable bundles on projective varieties. Comment. Math. Helv.59, 635–650 (1984)Google Scholar
  7. [F-L]
    Fulton, W., Lazarsfeld, R.: Positive polynomials for ample vector bundles. Ann. Math.118, 35–60 (1983)Google Scholar
  8. [Ko]
    Kobayashi, S.: Differential geometry of complex vector bundles. (Publ. Math. Soc. Japan, vol. 15) Princeton: Iwanami Shoten Publishers and Princeton University Press 1987Google Scholar
  9. [Ma]
    Maruyama, M.: The theorem of Grauert-Mülich-Spindler. Math. Ann.255, 317–333 (1981)Google Scholar
  10. [Mat]
    Matsumura, H.: Commutative Algebra, II. Edit. Reading, Mass.: Benjamin 1980Google Scholar
  11. [M-R]
    Mehta, V.B., Ramanathan, A.: Semistable sheaves on projective varieties and their restrictions to curves. Math. Ann.258, 213–224 (1982)Google Scholar
  12. [Mu1]
    Mumford, D.: Projective invariants of projective structures and applications. In: Proc. Int. Congr. Math., Stockholm, 1962, pp. 526–530. Djursholm: Institut Mittag-Leffler 1963Google Scholar
  13. [Mu2]
    Mumford, D.: Lectures on curves on an algebraic surface. (Ann. Math. Stud., vol. 59), Princeton, N.J.: Princeton University Press 1966Google Scholar
  14. [Oga]
    Ogawa, R.: On the points of Weierstrass in dimension greater than one. Trans. Am. Math. Soc.184, 401–417 (1973)Google Scholar
  15. [Re]
    Reid, M.: Canonical 3-folds. In: Beauville, A. (ed) Géométrie Algébrique Angers 1979, pp. 273–310. Alphen aan den Rijn: Sijthoff & Noordhoff 1980Google Scholar
  16. [Ta]
    Takemoto, F.: Stable vector bundles on algebraic surfaces. Nagoya Math. J.47, 29–48 (1972)Google Scholar
  17. [Tsu]
    Tsuji, H.: Stability of tangent bundles of minimial algebraic varieties. Topology27, 429–442 (1988)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • F. Catanese
    • 1
  • M. Schneider
    • 2
  1. 1.Dipartimento di MatematicaUniversitá di PisaPisaItaly
  2. 2.Mathematisches Institut der Universität BayreuthBayreuthGermany

Personalised recommendations