Mathematische Annalen

, Volume 293, Issue 1, pp 317–330 | Cite as

Operators intoL1 of a vector measure and applications to Banach lattices

  • Guillermo P. Curbera
Article

Mathematics Subject Classification (1991)

46G10 46E30 28B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DU]
    Diestel, J., Uhl, J.J., Jr.: Vector measures. (Math. Surv., vol. 15) Providence, RI: Am. Math. Soc. 1977Google Scholar
  2. [BDS]
    Bartle, R.G., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Can. J. Math.7, 289–305 (1955)Google Scholar
  3. [BD]
    Brooks, J.K., Dinculeanu, N.: Lebesgue-type spaces for vector integration, linear operators, weak completeness and weak compactness. J. Math. Anal. Appl.54, 348–389 (1976)Google Scholar
  4. [BP]
    Bessaga, C., Pelczynski, A.: On bases and unconditional convergence of series in Banach spaces. Stud. Math.17, 151–164 (1958)Google Scholar
  5. [K]
    Kalton, N.: Spaces of compact operators. Math. Ann.208, 267–278 (1974)Google Scholar
  6. [L-1]
    Lewis, D.R.: Integration with respect to vector measures. Pac. J. Math.33, 157–165 (1970)Google Scholar
  7. [L-2]
    Lewis, D.R.: On integration and summability in vector spaces. III. J. Math.16, 294–307 (1972)Google Scholar
  8. [L]
    Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Berlin Heidelberg New York: Springer 1979Google Scholar
  9. [M-1]
    Meyer-Nieberg, P.: Zur schwachen Kompaktheit in Banachverbänden. Math. Z.134, 303–315 (1973)Google Scholar
  10. [M-2]
    Meyer-Nieberg, P.: Über Klassen schwach kompakter Operatoren in Banachverbänden. Math. Z.138, 145–159 (1974)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Guillermo P. Curbera
    • 1
  1. 1.Departamento de Análisis MatemáticoUniversidad de SevillaSevillaSpain

Personalised recommendations