Mathematische Annalen

, Volume 293, Issue 1, pp 163–176

GLn(q) as Galois group over the rationals

  • Helmut Völklein
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be]
    Belyi, G.V.: On extensions of the maximal cyclotomic field having a given classical Galois group. J. Reine Angew. Math.341, 147–156 (1983)Google Scholar
  2. [Bo]
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  3. [Feit]
    Feit, W.: Rigidity of Aut(PSL2(p 2)),p≡±2 mod 5. In: Aschbacher, M., et al. (eds.) Proceedings of the Rutgers group theory year. Cambridge: Cambridge University Press 1984Google Scholar
  4. [FV]
    Fried, M.D., Völklein, H.: The inverse Galois problem and rational points on moduli spaces. Math. Ann.290, 771–800 (1991)Google Scholar
  5. [Hu]
    Huppert, B.: Endliche Gruppen I. (Grad. Texts Math.) Berlin Heidelberg New York: Springer 1967Google Scholar
  6. [Le]
    Lenstra, H.W.: Rational functions invariant under a finite abelian group. Invent. Math.25, 299–325 (1974)Google Scholar
  7. [Malle]
    Malle, G.: Exceptional groups of Lie type as Galois groups J. Reine Angew. Math.392, 70–109 (1988)Google Scholar
  8. [MM]
    Malle, G., Matzat, B.H.: Realisierung von Gruppen PSL2(Fp) als Galoisgruppen über Q. Math. Ann.272, 549–565 (1985)Google Scholar
  9. [Ma1]
    Matzat, B.H.: Konstruktive Galoistheorie. (Lect. Notes Math., vol. 1284) Berlin Heidelberg New York: Springer 1987Google Scholar
  10. [Ma2]
    Matzat, B.H.: Der Kenntnisstand in der konstruktiven Galois'schen Theorie. In: Michler, G.O., Ringel, C.M. (eds.) Representation Theory of Finite Groups and Finite-Dimensional Algebras, pp. 65–98. Boston Basel Stuttgart: Birkhäuser 1991Google Scholar
  11. [McL]
    McLaughlin, J.: Some groups generated by transvections. Arch. Math.18, 364–368 (1967)Google Scholar
  12. [Sh]
    Shih, K.Y.: On the construction of Galois extensions of function fields and number fields. Math. Ann.207, 99–120 (1974)Google Scholar
  13. [Th1]
    Thompson, J.G.: Some finite groups which appear as Gal(L/K) whereK⊂Q(μn). J. Algebra89, 437–499 (1984)Google Scholar
  14. [Th2]
    Thompson, J.G.: PSL3 and Galois groups overQ. In: Aschbacher, M., et al. (eds.) Proceedings of the Rutgers group theory year. Cambridge: Cambridge University Press 1984Google Scholar
  15. [Th3]
    Thompson, J.G.: Rigidity, GL(n,q), and the braid group. Bull. Soc. Math. Belg.17, 723–733 (1990)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Helmut Völklein
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA
  2. 2.Universität ErlangenErlangenGermany

Personalised recommendations