Mathematische Annalen

, Volume 293, Issue 1, pp 123–141

Schottky-Landau growth estimates fors-normal families of holomorphic mappings

  • M. G. Zaidenberg
Article

Mathematics Subject Classification (1991)

32 32A17 32A22 32H15 32H20 32H25 32H30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Aladro, G.: Applications of the Kobayashi metric to normal functions of several complex variables. Util. Math.31, 13–24 (1987)Google Scholar
  2. Ba Bagemihl, F.: Some boundary properties of normal functions bounded on nontangential arcs. Arch. Math.14, 399–406 (1963)Google Scholar
  3. Br Brody, R.: Compact manifolds and hyperbolicity. Trans. Am. Math. Soc235, 213–219 (1978)Google Scholar
  4. CaWi Campbell, D.M., Wickes, G.: Characterizations of normal meromorphic functions. In: Laine, J. et al. (eds.) Complex Analysis, Joensuu 1978. (Lect. Notes Math., vol. 747, pp. 55–72). Berlin, Heidelberg, New York: Springer 1979Google Scholar
  5. CiKr Cima, J.A., Krantz, S.G.: The Lindelöf principle and normal functions of several complex variables. Duke Math. J.50, 303–328 (1983)Google Scholar
  6. Do Dovbuš, P.V.: Boundary behavior of normal holomorphic functions of several complex variables. Sov. Math., Dokl.25, 267–270 (1982)Google Scholar
  7. Ea Eastwood, A.: A propos des variétés hyperboliques complètes. C.R. Acad. Sci. Ser. A280, 1071–1075 (1975)Google Scholar
  8. Fu Funahashi, K.: Normal holomorphic mappings and classical theorems of function theory. Nagoya Math. J.32, 89–104 (1984)Google Scholar
  9. Ga1 Gavrilov, V.I.: Boundary properties of functions meromorphic in the unit disc (in Russian). Dokl. Akad. Nauk SSSR151, 19–22 (1963)Google Scholar
  10. Ga2 Gavrilov, V.I.: Limits on continuous curves and sequences of points of meromorphic and generalized meromorphic functions in the unit disc (in Russian). I. Vest. Mosk. Univ., Ser. I., Mat-Mehan.1, 44–55 (1964); II. ibid. Vest. Mosk. Univ., Ser. I., Mat-Mehan.2, 30–36, (1964)Google Scholar
  11. Gau Gauthier, P.: A criterion or normality. Nagoya Math. j.32, 272–282 (1968)Google Scholar
  12. GiDo Gichev, V.V., Dobrovol'skii, S.M.: On some characteristic properties of Bloch functions. Sib. Math. J.28, 61–64 (1987)Google Scholar
  13. Gr Green, M.L.: The hyperbolicity of complement of 2n+1 hyperplanes in ℙ9, and related results. Proc. Am. Math. Soc.66, 109–113 (1977)Google Scholar
  14. Ha1 Hahn, K.T.: Asymptotic behavior of normal mappings of several complex variables. Can. J. Math.36, 718–746 (1984)Google Scholar
  15. Hay1 Hayman, W.K.: Meromorphic functions. Oxford: Oxford University Press 1964Google Scholar
  16. Hay2 Hayman, W.K.: Uniformly normal families. Lectures on functions of a complex variable, pp. 199–212. Ann Arbor: University of Michigan Press 1955Google Scholar
  17. He Hempel, J.: A. A precise bound in the theorems of Schottky and Picard. J. Lond. Math. Soc.21, 279–286 (1980)Google Scholar
  18. Jä Järvi, P.: An extension theorem for normal functions. Proc. Am. Math. Soc.103, 1171–1174 (1988)Google Scholar
  19. Je1 Jenkins, J.A.: On explicit bounds in Schottky's theorem. Can. J. Math.7, 76–82 (1955)Google Scholar
  20. Je2 Jenkins, J.A.: On explicit bounds in Landau's theorem. Can. J. Math.8, 423–425 (1956)Google Scholar
  21. JoKw Joeseph, J.E., Kwack, M.H.: Normal and Bloch mappings on hyperbolic manifolds pp. 1–21. (Preprint)Google Scholar
  22. KiKo Kiernan, P., Kobayashi, Sh.: Holomorphic mappings into projective space with lacunary hyperplanes. Nagoya Math. J.50, 199–216 (1973)Google Scholar
  23. Ki Kiernan, P.: Hyperbolically imbedded spaces and the big Picard theorem. Math. Ann.204, 203–209 (1973)Google Scholar
  24. Ko Kobayashi, Sh.: Hyperbolic manifolds and holomorphic mappings. New York: M. Dekker 1970Google Scholar
  25. KrMa Krantz, S.G., Ma, D.: Bloch functions on strongly pseudoconvex domains. Indiana Univ. Math. J.37, 145–163 (1988)Google Scholar
  26. La Landau, E.: Über eine Verallgemeinerung des Picardsche Satzes. Sitzungsber. Preuss. Akad. Wiss.8, 1118–1133 (1904)Google Scholar
  27. Lan Lange, L.H.: Sur les cercles de remplissage non-Euclidions. Ann. Sci. Norm. Supér.77, 257–280 (1960)Google Scholar
  28. Levi Lehto, O., Virtanen, K.I.: Boundary behavior and normal meromorphic functions. Acta. math.97, 47–65 (1957)Google Scholar
  29. Mo Montel, P.: Leçons sur les familles normales de fonctions analytiques et leurs applications. Paris 1927Google Scholar
  30. Mi Milloux, H.: Le théorème de M. Picard, suites de fonctions holomorphes, fonctions méromorphes et fonctions entières. J. Math. Pures Appl., IX. Ser.3, 345–401 (1924)Google Scholar
  31. Os1 Ostrovskii, I.V.: Generalization of the Tichmarsh convolution theorem and the complexvalued measures uniquely determined by their restrictions to a half-line. (Lect. Notes Math., vol. 1155, pp. 256–283). Berlin, Heidelberg, New York: Springer 1985Google Scholar
  32. Os2 Ostrovskii, I.V.: On a certain class of functions of bounded variation on a line determined by its values on the half-line (in Russian). Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova92, 220–229 (1979)Google Scholar
  33. Ro1 Royden, H.L.: Remarks on the Kobayashi metric. (Lect. Notes Math., vol. 185, pp. 125–137). Berlin, Heidelberg, New York: Springer 1971Google Scholar
  34. Ro2 Royden, H.L.: A criterion for the normality of a family of meromorphic functions. Ann. Acad. Sci. Fenn., Ser. AI10, 499–500 (1985)Google Scholar
  35. Sch Schottky, F.: Über den Picardschen Satz und die Borelschen Ungleichungen. Sitzungsber. Preuss. Akad. Wiss.8, 1244–1263 (1904)Google Scholar
  36. Za1 Zaidenberg, M.G.: Picard's theorem and hyperbolicity. Sib. Math. J.24, 858–867 (1983)Google Scholar
  37. Za2 Zaidenberg, M.G.: On some applications of hyperbolic analysis (in Russian). Kompleksnyi Analiz i Matem, pp. 29–38. Fizika, Tezisy Konferentssi. Krasnoyarsk: Institut Fiziki SO AN SSSR 1988.Google Scholar
  38. Za3 Zaidenberg, M.G.: Transcendental solutions of Diophantine equations. Funct. Anal. Appl.22, 322–324 (1988)Google Scholar
  39. Za4 Zaidenberg, M.G.: Criteria of hyperbolicity and families of curves (in Russian). Teor. Funkts., Funkts. Anal. Prilozh.52, 40–54 (1989)Google Scholar
  40. Za5 Zaidenberg, M.G.: Families of curves and hyperbolicity (in Russian). Teor. Funkts., Funkts. Anal. Prilozh.53, 26–43 (1990)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. G. Zaidenberg
    • 1
  1. 1.Max-Planck-Institut für MathematikBonn 3Germany

Personalised recommendations