Symplectic topology as the geometry of generating functions
Article
- 635 Downloads
- 114 Citations
Keywords
Symplectic Topology
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [Ar]Arnold, V.I.: First steps of symplectic topology. Russ. Math. Surv.6, 3–18 (1986)Google Scholar
- [Ce]Cerf, J.: La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Publ. Math., Inst. Hautes Étud. Sci.39, 5–173 (1971)Google Scholar
- [Ch]Chaperon, M.: Une idée du type géodésiques brisées pour les systèmes hamiltoniens. C. R. Acad. Sci., Paris298, 293–296 (1984)Google Scholar
- [Co-Z]Conley, C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math.37, 207–253 (1984)Google Scholar
- [E-H1]Ekeland, I., Hofer, H.: Periodic solutions with prescribed minimal period for convex autonomous systems. Invent. Math.81, 155–188 (1985)Google Scholar
- [E-H2]Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics. Math. Z.200, 355–378 (1989)Google Scholar
- [E-H3]Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics II. Math. Z. (to appear)Google Scholar
- [El]Eliashberg, Y.: A theorem on the structure of wave front and its applications in symplectic topology. Funct. Anal. Appl.21, 65–72 (1987)Google Scholar
- [Fl1]Floer, A.: The unregularized Gradient Flow of the symplectic Action. Commun. Pure Appl. Math. (to appear)Google Scholar
- [F12]Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. (to appear)Google Scholar
- [F-H-V]Floer, A., Hofer, H., Viterbo, C.: The proof of Weinstein Conjecture inP×ℂ (to appear)Google Scholar
- [Gi]Giroux, E.: Formes génératrices d'immersions lagrangiennes. C.R. Acad. Sci., Paris, Ser. I306, 761–764 (1988)Google Scholar
- [G1]Gromov, M.: Pseudo holomorphic curves on almost complex manifolds. Invent. Math.82, 307–347 (1985)Google Scholar
- [G2]Gromov, M.: Soft and hard symplectic geometry. In: Gleason, A.M. (ed.) Proceedings of the International Congress of Mathematicians 1986, pp. 81–98, Providence, RI Am. Math. Soc. 1987Google Scholar
- [H]Hofer, H.: Topological properties of symplectic maps. (Preprint, Ruhr Universität Bochum)Google Scholar
- [Hö]Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)Google Scholar
- [La]Latour, F.: Transversales lagrangiennes. Périodicité de Bott et formes génératrices pour une immersion lagrangienne compacte dans un cotangent. Ann. Sci. Éc. Norm. Supér.24, 3–55 (1991)Google Scholar
- [L-S]Laudenbach, F., Sikorav, J.C.: Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent. Invent. Math.82, 349–357 (1985)Google Scholar
- [Lees]Lees, J.A.: Defining Lagrangian immersions by phase functions. Trans. Am. Math. Soc.250, 213–222 (1979)Google Scholar
- [Si1]Sikorav, J.C.: Sur les immersions lagrangiennes admettant une phase génératrice globale. C. R. Acad. Sci., Paris, Sér. I302, 119–122 (1986)Google Scholar
- [Si2]Sikorav, J.C.: Problèmes d'intersection et de points fixes en géométrie Hamiltonienne. Comment. Math. Helv.62, 61–72 (1987)Google Scholar
- [V1]Viterbo, C.: Intersections de sous-variétés lagrangiennes, fonctionelles d'action et indice des systèmes hamiltoniens. Bull. Soc. Math. Fr.115, 61–72 (1987)Google Scholar
- [V2]Viterbo, C.: New obstructions to embedding Lagrangian tori. Invent. Math.100, 301–320 (1990)Google Scholar
- [V3]Viterbo, C.: Capacités symplectiques et applications. In: Séminaire Bourbaki, Juin 89. Astérisque (to appear)Google Scholar
- [We]Weinstein, A.: Lectures on symplectic manifolds (Reg. Conf. Ser. Math., no 29) Providence, R.I.: Am. Math. Soc. 1979Google Scholar
Copyright information
© Springer-Verlag 1992