Advertisement

Mathematische Annalen

, Volume 292, Issue 1, pp 685–710 | Cite as

Symplectic topology as the geometry of generating functions

  • Claude Viterbo
Article

Keywords

Symplectic Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar]
    Arnold, V.I.: First steps of symplectic topology. Russ. Math. Surv.6, 3–18 (1986)Google Scholar
  2. [Ce]
    Cerf, J.: La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Publ. Math., Inst. Hautes Étud. Sci.39, 5–173 (1971)Google Scholar
  3. [Ch]
    Chaperon, M.: Une idée du type géodésiques brisées pour les systèmes hamiltoniens. C. R. Acad. Sci., Paris298, 293–296 (1984)Google Scholar
  4. [Co-Z]
    Conley, C., Zehnder, E.: Morse type index theory for flows and periodic solutions for Hamiltonian equations. Commun. Pure Appl. Math.37, 207–253 (1984)Google Scholar
  5. [E-H1]
    Ekeland, I., Hofer, H.: Periodic solutions with prescribed minimal period for convex autonomous systems. Invent. Math.81, 155–188 (1985)Google Scholar
  6. [E-H2]
    Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics. Math. Z.200, 355–378 (1989)Google Scholar
  7. [E-H3]
    Ekeland, I., Hofer, H.: Symplectic topology and Hamiltonian dynamics II. Math. Z. (to appear)Google Scholar
  8. [El]
    Eliashberg, Y.: A theorem on the structure of wave front and its applications in symplectic topology. Funct. Anal. Appl.21, 65–72 (1987)Google Scholar
  9. [Fl1]
    Floer, A.: The unregularized Gradient Flow of the symplectic Action. Commun. Pure Appl. Math. (to appear)Google Scholar
  10. [F12]
    Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. (to appear)Google Scholar
  11. [F-H-V]
    Floer, A., Hofer, H., Viterbo, C.: The proof of Weinstein Conjecture inP×ℂ (to appear)Google Scholar
  12. [Gi]
    Giroux, E.: Formes génératrices d'immersions lagrangiennes. C.R. Acad. Sci., Paris, Ser. I306, 761–764 (1988)Google Scholar
  13. [G1]
    Gromov, M.: Pseudo holomorphic curves on almost complex manifolds. Invent. Math.82, 307–347 (1985)Google Scholar
  14. [G2]
    Gromov, M.: Soft and hard symplectic geometry. In: Gleason, A.M. (ed.) Proceedings of the International Congress of Mathematicians 1986, pp. 81–98, Providence, RI Am. Math. Soc. 1987Google Scholar
  15. [H]
    Hofer, H.: Topological properties of symplectic maps. (Preprint, Ruhr Universität Bochum)Google Scholar
  16. [Hö]
    Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)Google Scholar
  17. [La]
    Latour, F.: Transversales lagrangiennes. Périodicité de Bott et formes génératrices pour une immersion lagrangienne compacte dans un cotangent. Ann. Sci. Éc. Norm. Supér.24, 3–55 (1991)Google Scholar
  18. [L-S]
    Laudenbach, F., Sikorav, J.C.: Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent. Invent. Math.82, 349–357 (1985)Google Scholar
  19. [Lees]
    Lees, J.A.: Defining Lagrangian immersions by phase functions. Trans. Am. Math. Soc.250, 213–222 (1979)Google Scholar
  20. [Si1]
    Sikorav, J.C.: Sur les immersions lagrangiennes admettant une phase génératrice globale. C. R. Acad. Sci., Paris, Sér. I302, 119–122 (1986)Google Scholar
  21. [Si2]
    Sikorav, J.C.: Problèmes d'intersection et de points fixes en géométrie Hamiltonienne. Comment. Math. Helv.62, 61–72 (1987)Google Scholar
  22. [V1]
    Viterbo, C.: Intersections de sous-variétés lagrangiennes, fonctionelles d'action et indice des systèmes hamiltoniens. Bull. Soc. Math. Fr.115, 61–72 (1987)Google Scholar
  23. [V2]
    Viterbo, C.: New obstructions to embedding Lagrangian tori. Invent. Math.100, 301–320 (1990)Google Scholar
  24. [V3]
    Viterbo, C.: Capacités symplectiques et applications. In: Séminaire Bourbaki, Juin 89. Astérisque (to appear)Google Scholar
  25. [We]
    Weinstein, A.: Lectures on symplectic manifolds (Reg. Conf. Ser. Math., no 29) Providence, R.I.: Am. Math. Soc. 1979Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Claude Viterbo
    • 1
  1. 1.Ceremade, U.A. 749 du C.N.R.S.Université de Paris-DauphineParis Cedex 16France

Personalised recommendations