Mathematische Annalen

, Volume 292, Issue 1, pp 457–492 | Cite as

Asymptotic stability of Schrödinger semigroups: path integral methods

  • C. J. K. Batty

Mathematics Subject Classification (1991)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A.: Sobolev spaces. New York: Academic Press 1975Google Scholar
  2. 2.
    Agmon, S.: Lectures on elliptic boundary value problems. Princeton: van Nostrand 1965Google Scholar
  3. 3.
    Aizenman, M., Simon, B.: Brownian motion and Harnack's inequality for Schrödinger operators. Commun. Pure Appl. Math.35, 209–271 (1982)Google Scholar
  4. 4.
    Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc.306, 837–852 (1988)Google Scholar
  5. 5.
    Arendt, W., Batty, C.J.K.: Exponential stability of Schrödinger semigroups. (Preprint)Google Scholar
  6. 6.
    Arendt, W., Batty, C.J.K.: Absorption semigroups and Dirichlet boundary conditions. (Preprint)Google Scholar
  7. 7.
    Arendt, W., Batty, C.J.K. Bénilan, Ph.: Asymptotic stability of Schrödinger semigroups onL 1(R N). Math. Z. (to appear)Google Scholar
  8. 8.
    Cycon, H.L., Froese, R.G., Kirsch, W., Simor, B.: Schrödinger operators with applications to quantum mechanics and global geometry. Berlin Heidelberg New York: Springer 1986Google Scholar
  9. 9.
    Demuth, M., van Casteren, J.A.: On spectral theory of self-adjoint Feller generators. Rev. Math. Phys.1, 325–414 (1989)Google Scholar
  10. 10.
    Hempel, R., Voigt, J.: The spectrum of a Schrödinger operator inL p (R ν) isp-independent. Commun. Math. Phys.104, 243–250 (1986)Google Scholar
  11. 11.
    Kato, T.:L p-theory of Schrödinger operators. In: Nagel, R., Schlotterbeck, U., Wolff, M. (eds.) Aspects of positivity in functional analysis, pp. 63–78. Amsterdam: North-Holland 1986Google Scholar
  12. 12.
    Knight, F.B.: Essentials of Brownian motion and diffusion. Providence: Am. Math. Soc. 1981Google Scholar
  13. 13.
    Lyubich, Yu.I., Vũ Quôc Phóng: Asymptotic stability of linear differential equations on Banach spaces. Studia Math.88, 37–42 (1988)Google Scholar
  14. 14.
    McKean, H.P., −Δ plus a bad potential. J. Math. Phys.18, 1277–1279 (1977)Google Scholar
  15. 15.
    Nagel, R. (ed.): One-parameter semigroups of positive operators. (Lect. Notes Math., vol. 1184) Berlin Heidelberg New York: Springer 1986Google Scholar
  16. 16.
    Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Berlin Heidelberg New York: Springer 1983Google Scholar
  17. 17.
    Port, S.C., Stone, C.J.: Brownian motion and classical potential theory. New York: Academic Press 1978Google Scholar
  18. 18.
    Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979Google Scholar
  19. 19.
    Simon, B.: Brownian motion,L p properties of Schrödinger operators, and the localization of binding. J. Funct. Anal.35, 215–229 (1980)Google Scholar
  20. 20.
    Simon, B.: Large time behavior of theL p norm of Schrödinger semigroups. J. Funct. Anal.40, 66–83 (1981)Google Scholar
  21. 21.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc.7, 447–526 (1982)Google Scholar
  22. 22.
    Voigt, J.: Absorption semigroups, their generators, and Schrödinger semigroups. J. Funct. Anal.67, 167–205 (1986)Google Scholar
  23. 23.
    Voigt, J.: Absorption semigroups. J. Oper. Theory20, 117–131 (1988)Google Scholar
  24. 24.
    Williams, D.: Diffusions, Markov processes, and martingales, I. Chichester: Wiley 1979Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • C. J. K. Batty
    • 1
  1. 1.St. John's CollegeOxfordUK

Personalised recommendations