Mathematische Annalen

, Volume 292, Issue 1, pp 375–381 | Cite as

Orientation-reversing homeomorphisms in surface geography

  • D. Kotschick

Mathematics Subject Classification (1991)

14J29 57R50 57R55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Be]
    Beauville, A.: Surfaces complexes et orientation. Astérisque126, 41–43 (1985)Google Scholar
  2. [Ce]
    Chen, Z.: On the geography of surfaces-simply connected minimal surfaces with positive index. Math. Ann.277, 141–164 (1987)Google Scholar
  3. [Do]
    Donaldson, S.K.: Polynomial invariants for smooth four-manifolds. Topology29, 257–315 (1990)Google Scholar
  4. [Fr]
    Freedman, M.H.: The topology of four-dimensional manifolds. J. Differ. Geom.17, 357–453 (1982)Google Scholar
  5. [Ko]
    Kotschick, D.: Non-trivial harmonic spinors on certain algebraic surfaces. In: Mabuchi, T. (ed.): Einstein metrics and Yang-Mills connections. (Lect. Notes Math.) Berlin Heidelberg New York: Springer (to appear)Google Scholar
  6. [Ma]
    Mandelbaum, R.: Four-dimensional topology: an introduction. Bull. Am. Math. Soc.2, 1–159 (1980)Google Scholar
  7. [Mo]
    Moishezon, B.G.: Analogs of Lefschetz theorems for linear systems with isolated singularities. J. Differ. Geom.31, 47–72 (1990)Google Scholar
  8. [MT1]
    Moishezon, B., Teicher, M.: Existence of simply connected algebraic surfaces of general type with positive and zero indices. Proc. Natl. Acad. Sci. USA83, 6665–6666 (1986)Google Scholar
  9. [MT2]
    Moishezon, B., Teicher, M.: Simply-connected algebraic surfaces of positive index. Invent. Math.89, 601–643 (1987)Google Scholar
  10. [Pe]
    Persson, U.: Chern invariants of surfaces of general type. Compos. Math.43, 3–58 (1981)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • D. Kotschick
    • 1
    • 2
  1. 1.Queens' CollegeCambridgeUK
  2. 2.Mathematisches InstitutUniversität BaselBaselSwitzerland

Personalised recommendations