Mathematische Annalen

, Volume 288, Issue 1, pp 713–730 | Cite as

Extension functors of modular Lie algebras

  • Rolf Farnstein
Article

Keywords

Extension Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, E.: Hopf algebras. Cambridge: Cambridge University Press 1980Google Scholar
  2. 2.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton, NJ: Princeton Univ. Press 1956Google Scholar
  3. 3.
    Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc.63, 85–124 (1948)Google Scholar
  4. 4.
    Chiu, S., Shen, G.: Cohomology of graded Lie algebras of Cartantype of characteristicp. Abh. Math. Semin. Univ. Hamb.57, 139–156 (1986)Google Scholar
  5. 5.
    Dixmier, J.: Cohomologie des algèbres des Lie nilpotentes. Acta Sci. Math. (Szeged)16, 246–250 (1955)Google Scholar
  6. 6.
    Farnsteiner, R.: Central extensions and invariant forms of graded Lie algebras. Algebras Groups Geom.3, 431–455 (1986)Google Scholar
  7. 7.
    Farnsteiner, R.: Dual space derivations andH 2 (L, F) of modular Lie algebras. Can. J. Math.39, 1078–1106 (1987)Google Scholar
  8. 8.
    Farnsteiner, R.: On the cohomology of associative algebras and Lie algebras. Proc. Am. Math. Soc.99, 415–420 (1987)Google Scholar
  9. 9.
    Farnsteiner, R.: On the vanishing of homology and cohomology groups of associative algebras. Trans. Am. Math. Soc.306, 651–665 (1988)Google Scholar
  10. 10.
    Farnsteiner, R.: Cohomology groups of infinite dimensional algebras. Math. Z.199, 407–423 (1988)Google Scholar
  11. 11.
    Farnsteiner, R.: Beiträge zur Kohomologietheorie assoziativer Algebren. Habilitationschrift Hamburg 1989Google Scholar
  12. 12.
    Farnsteiner, R., Strade, H.: Shapiro's Lemma and its consequences in the cohomology theory of modular Lie algebras. Math. Z. (to appear)Google Scholar
  13. 13.
    Garland, H., Lepowsky, J.: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math.34, 37–76 (1976)Google Scholar
  14. 14.
    Hilton, P.J., Stammbach, U.: A course in homological algebra. (Graduate Texts, Vol. 4) Berlin Heidelberg New York: Springer 1970Google Scholar
  15. 15.
    Hochschild, G.P.: On the cohomology groups of an associative algebra. Ann. Math.46, 58–67 (1945)Google Scholar
  16. 16.
    Jacobson, N.: A note on Lie algebras of characteristicp. Am. J. Math.74, 357–359 (1952)Google Scholar
  17. 17.
    Rotman, J.: An introduction to homological algebra. Vol. 85. Orlando: Academic Press 1979Google Scholar
  18. 18.
    Seligman, G.B.: Modular Lie algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 40, Berlin Heidelberg New York: Springer 1967Google Scholar
  19. 19.
    Shen, G.: Graded modules of graded Lie algebras of Cartan type I. Scientica Sinica29, 570–581 (1986)Google Scholar
  20. 20.
    Shen, G.: Graded modules of graded Lie algebras of Cartan type II. Sci. Sin., Ser.A29, 1009–1019 (1986)Google Scholar
  21. 21.
    Shen, G.: Graded modules of graded Lie algebras of Cartan type III. Chin. Ann. Math., Ser.B9B, 404–417 (1988)Google Scholar
  22. 22.
    Strade, H.: Darstellungen auflösbarer Lie Algebren. Math. Ann.232, 15–32 (1978)Google Scholar
  23. 23.
    Strade, H.: The role ofp-envelopes in the theory of modular Lie algebras. Contemp. Math. (to appear)Google Scholar
  24. 24.
    Strade, H., Farnsteiner, R.: Modular Lie algebras and their representations. Textbooks and Monographs 116. New York: Dekker 1988Google Scholar
  25. 25.
    Whitehead, J.H.C.: On the decomposition of an infinitesimal group. Proc. Cambridge Philos. Soc.32, 229–237 (1936)Google Scholar
  26. 26.
    Whitehead, J.H.C.: Certain equations in the algebra of a semisimple infinitesimal group. Q. J. Math., Oxf. II. Ser.8, 220–237 (1937)Google Scholar
  27. 27.
    Williams, F.L.: The cohomology of semisimple Lie algebras with coefficients in a Verma module. Trans. Am. Math. Soc.240, 115–127 (1978)Google Scholar
  28. 28.
    Zassenhaus, H.: The representations of Lie algebras of prime characteristics. Proc. Glasgow Math. Ass.21, 1–36 (1954)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Rolf Farnstein
    • 1
  1. 1.Department of MathematicsUniversity of WisconsinMilwaukeeUSA

Personalised recommendations