Mathematische Annalen

, Volume 302, Issue 1, pp 561–579 | Cite as

Abelian varieties, ℓ-adic representations, and ℓ-independence

  • M. Larsen
  • R. Pink
Article

Mathematics Subject Classification (1991)

14K15 11G10 14F20 14K10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bourbaki, Groupes et algèbres de Lie, Paris: Masson (1981)Google Scholar
  2. 2.
    W. Chi, On the ℓ-adic representations attached to simple abelian varieties of type IV, Bull. Austral. Math. Soc.44 (1991) 71–78Google Scholar
  3. 3.
    W. Chi, ℓ-adic and λ-adic representations associated to Abelian varieties defined over number fields, Amer. J. Math.114 (1992) 315–353Google Scholar
  4. 4.
    P. Deligne et al. Séminaire de géométrie algébrique 4 1/2, Cohomologie étale, Springer LN569 (1977)Google Scholar
  5. 5.
    P. Deligne, La Conjecture de Weil, II, Publ. Math. IHES,52, (1980), 138–252Google Scholar
  6. 6.
    P. Deligne, et al., Hodge cycles, motives and Shimura varieties. Lecture Notes in Mathematics 900, Springer-Verlag, Berlin (1982)Google Scholar
  7. 7.
    G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983) 349–366Google Scholar
  8. 8.
    M. Larsen and R. Pink, Determining representations from invariant dimensions, Invent. Math.102, (1990) 377–398Google Scholar
  9. 9.
    M. Larsen and R. Pink, On ℓ-independence of algebraic monodromy groups in compatible systems of representations, Invent. Math.107 (1992) 603–636Google Scholar
  10. 10.
    D. Mumford, Families of abelian varieties, Proc. Symp. Pure Math., AMS, IX (1966) 347–351Google Scholar
  11. 11.
    R. Pink, On the calculation of local terms in the Lefschetz-Verdier trace formula and its application to a conjecture of Deligne, Annals of Mathematics135 (1992) 483–525Google Scholar
  12. 12.
    J.-P. Serre, Résumé des cours 1965–1966, in Annuaire du Collège de France (1966), 49–58Google Scholar
  13. 13.
    J.-P. Serre, Abelian ℓ-adic representations and elliptic curves. W.A. Benjamin, Inc, New York (1968)Google Scholar
  14. 14.
    J.-P. Serre, Représentations ℓ-adiques, in: Algebraic Number Theory, Int. Symp. Kyoto 1976, S. Iyanaga (Ed.): Japan Society for the Promotion of Science, Tokyo (1977)Google Scholar
  15. 15.
    J.-P. Serre, Letter to K. Ribet, Jan. 1, 1981Google Scholar
  16. 16.
    J.-P. Serre, Letter to J. Tate, Jan. 2, 1985Google Scholar
  17. 17.
    J.-P. Serre, Résumé des cours 1984–1985, In Annuaire du Collège de France (1985), 85–91Google Scholar
  18. 18.
    J. Tate, Algebraic cycles and poles of zeta functions, in Arithmetical Algebraic Geometry, Harper and Row, New York (1965) 93–110Google Scholar
  19. 19.
    Yu. G. Zarhin, Isogenies of abelian varieties over fields of finite characteristics, Math. USSR Sbornik24 (1974), 451–461Google Scholar
  20. 20.
    Yu. G. Zarhin, A remark on endomorphisms of abelian varieties over function fields of finite characteristics, Math. USSR Izv.8 (1974), 477–480Google Scholar
  21. 21.
    Yu. G. Zarhin, Abelian varieties, ℓ-adic representations and Lie algebras. Rank Independence on ℓ, Invent. Math.55, (1979), 165–176Google Scholar
  22. 22.
    Yu. G. Zarhin, Abelian varieties having a reduction of K3 type, Duke Math. J.65 (1992) 511–527Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • M. Larsen
    • 1
  • R. Pink
    • 2
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Fakultät für Mathematik und InformatikUniversität MannheimMannheimGermany

Personalised recommendations