Mathematische Annalen

, Volume 302, Issue 1, pp 507–517

The eta invariant and metrics of positive scalar curvature

  • Boris Botvinnik
  • Peter B. Gilkey
Article

Mathematics Subject Classification (1991)

58G12 58G25 53A50 53C25 55N22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.F. Atiyah, V.K. Patodi, and I.M. Singer, Spectral asymmetry and Riemannian geometry, Bull. London Math. Soc. 5 (1973) 229–234; Spectral asymmetry and Riemannian geometry I, II, III, Math. Proc. Cambr. Phil. Soc. 77 (1975) 43–69, 78 (1975) 405–432, 79 (1976) 71–99.Google Scholar
  2. [2]
    A. Bahri, M. Bendersky, D. Davis, and P. Gilkey, The complex bordism of groups with periodic cohomology, Trans. AMS V316 (1989), 673–687.Google Scholar
  3. [3]
    H. Donnelly, Eta invariants forG spaces, Indiana Univ. Math. J. 27 (1978), 889–918.Google Scholar
  4. [4]
    P. Gilkey, The Geometry of Spherical Space Form Groups, Series in Pure Mathematics Volume 7, World Scientific Press (1989), 361 pages.Google Scholar
  5. [5]
    P. Gilkey, Invariance Theory, the heat equation, and the Atiyah-Singer index theorem 2nd Ed CRC Press (1994), 516 pagesGoogle Scholar
  6. [6]
    M. Gromov and H.B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423–434; see also Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. IHES 58 (1983) 83–196.Google Scholar
  7. [7]
    M. Kreck and S. Stolz, Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993) 825–850.Google Scholar
  8. [8]
    H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, 1989.Google Scholar
  9. [9]
    A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris 257 (1963) 7–9.Google Scholar
  10. [10]
    T. Miyazaki, On the existence of positive curvature metrics on non simply connected manifolds, J. Fac. Sci. Univ. Tokyo Sect IA 30 (1984), 549–561.Google Scholar
  11. [11]
    J. Rosenberg,C * algebras, positive scalar curvature, and the Novikov conjecture, II. In Geometric Methods in Operator Algebras, Pitman Res. Notes 123, 341–374, Longman Sci. Techn., Harlow, 1986.Google Scholar
  12. [12]
    R. Schoen and S.T. Yau, The structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159–183.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Boris Botvinnik
    • 1
  • Peter B. Gilkey
    • 1
  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations