Mathematische Annalen

, Volume 302, Issue 1, pp 197–213 | Cite as

Some stability properties of Teichmüller modular function fields with pro-l weight structures

  • Hiroaki Nakamura
  • Naotake Takao
  • Ryoichi Ueno
Article

Mathematics Subject Classification (1991)

14H25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    M. Asada, On the filtration of topological and pro-l mapping class groups of punctured Riemann surfaces, preprintGoogle Scholar
  2. [AN]
    M. Asada, H. Nakamura, On graded quotient modules of mapping class groups of surfaces, Israel J. Math. (to appear)Google Scholar
  3. [G]
    A. Grothendieck, Esquisse d'un Programme, mimeographed note (1984)Google Scholar
  4. [Ih]
    Y. Ihara, Automorphisms of pure sphere braid groups and Galois representations, The Grothendieck Festschrift, Volume II, Birkhäuser, pp. 353–373Google Scholar
  5. [Ih2]
    Y. Ihara, The Galois representation arising fromP 1−{0, 1, ∞} and Tate twists of even degree, Galois Groups over √, Math. Sci. Res. Inst. Pub. vol. 16, Y. Ihara, K. Ribet, J.P. Serre (eds.), Springer, Berlin-Heidelberg-New York, 1989, pp. 299–313.Google Scholar
  6. [IK]
    Y. Ihara, M. Kaneko, Pro-l, pure braid groups of Riemann surfaces and Galois representations, Osaka J. Math.29 (1992), 1–19Google Scholar
  7. [J]
    D. Johnson, An abelian quotient of the mapping class group ℑg, Math. Ann.249 (1980), 225–242.Google Scholar
  8. [K]
    M. Kaneko, Certain automorphism groups of pro-l fundamental groups of punctured Riemann surfaces. J. Fac. Sci. Univ. Tokyo36 (1989), 363–372.Google Scholar
  9. [Kn]
    F. Knudsen, The projectivity of the moduli space of stable curves II: The stacksM g, n, Math. Scand.52 (1983), 161–199Google Scholar
  10. [M]
    M. Matsumoto, On the galois image in the derivation algebra of π1 of the projective line minus three points, Contemp. Math. (to appear)Google Scholar
  11. [Mo]
    S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke. Math. J. (1993), 699–726Google Scholar
  12. [N]
    H. Nakamura, Galois rigidity of pure sphere braid groups and profinite calculus, J. Math. Sciences, the Univ. of Tokyo1 (1994), 71–136Google Scholar
  13. [N2]
    H. Nakamura, Coupling of universal monodromy representations of Galois-Teichmüller modular groups, preprint, RIMS-976, April 1994Google Scholar
  14. [NT]
    H. Nakamura, H. Tsunogai, Some finiteness theorems on Galois centralizers in pro-l mapping class groups, J. reine angew Math.441 (1993), 115–144Google Scholar
  15. [NT2]
    H. Nakamura, H. Tsunogai, Atlas of pro-l mapping class groups and and related topics, in preparationGoogle Scholar
  16. [O1]
    T. Oda, Etale homotopy type of the moduli spaces of algebraic curves, preprintGoogle Scholar
  17. [O2]
    T. Oda, The universal monodromy representations on the pro-nilpotent fundamental groups of algebraic curves, Mathematische Arbeitstagung (Neue Serie) 9.–15. Juni 1993, Max-Planck-Institute preprint MPI/93-57.Google Scholar
  18. [R]
    M. Raynaud, Propriete cohomologique des faisceaux d'ensembles et des faisceaux de groupes non commutatifs, A. Grothendieck: Revêtments etales et groupe fondamental (SGA 1), Springer Lect. Note in Math., vol 224, pp. 344–439Google Scholar
  19. [S]
    G.P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc.68 (1970), 605–617Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Hiroaki Nakamura
    • 1
  • Naotake Takao
    • 2
  • Ryoichi Ueno
    • 2
  1. 1.Department of Mathematical SciencesUniversity of TokyoTokyoJapan
  2. 2.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations