Mathematische Annalen

, Volume 302, Issue 1, pp 131–150

On central extensions of mapping class groups

  • G. Masbaum
  • J. D. Roberts
Article

Mathematics Subject Classification (1991)

57N05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Atiyah. The logarithm of the Dedekind η-function, Math. Ann.278 (1987) 335–380Google Scholar
  2. 2.
    M.F. Atiyah. Topological quantum field theories, Publ. Math. IHES68 (1989), 175–186Google Scholar
  3. 3.
    M.F. Atiyah. On framings of 3-manifolds, Topology29 (1990), 1–7Google Scholar
  4. 4.
    J. Barge, E. Ghys. Cocycles d'Euler et de Maslov, Math. Ann.294 (1992) 235–265Google Scholar
  5. 5.
    C. Blanchet, N. Habegger, G. Masbaum, P. Vogel. Three-manifold invariants derived from the Kauffman bracket, Topology31 (1992), 685–699Google Scholar
  6. 6.
    C. Blanchet, N. Habegger, G. Masbaum, P. Vogel. Topological quantum field theories derived from the Kauffman bracket, to appear in Topology (Nantes Preprint May 1992)Google Scholar
  7. 7.
    R.A. Fenn, C.P. Rourke. Racks and Links in Codimension Two, Journal of Knot Theory and its Ramifications, Vol. 1 No. 4 (1992) 343–406Google Scholar
  8. 8.
    D.S. Freed, R.E. Gompf. Computer calculations of Witten's 3-manifold invariant, Comm. Math. Phys.141 (1991), 79–117Google Scholar
  9. 9.
    S. Gervais. Thèse, Nantes, January 1994Google Scholar
  10. 10.
    S. Gervais. Presentations and extensions of mapping class groups, Nantes Preprint May 1994Google Scholar
  11. 11.
    J. Harer. Thé second homology group of the mapping class group of an orientable surface, Invent. Math.72 (1983), 221–239Google Scholar
  12. 12.
    J. Harer. The Cohomology of the Moduli Space of Curves, in: E. Sernesi (Ed.), Theory of Moduli, Springer LNM 1337Google Scholar
  13. 13.
    A. Hatcher, W. Thurston. A presentation of the mapping class group of a closed orientable surface, Topology19 (1980), 221–237Google Scholar
  14. 14.
    L.H. Kauffman. State models and the Jones polynomial, Topology26 (1987), 395–401Google Scholar
  15. 15.
    R.C. Kirby, P. Melvin. Dedekind sums, mu invariants and the signature cocycle Math. Ann.299, 231–267 (1994)Google Scholar
  16. 16.
    T. Kohno. Topological invariants for 3-manifolds using representations of mapping class groups I, Topology31 (1992), 203Google Scholar
  17. 17.
    W.B.R. Lickorish. Three-manifolds and the Temperley-Lieb algebra, Math. Ann.290 (1990), 657–670Google Scholar
  18. 18.
    W.B.R. Lickorish. Calculations with the Temperley-Lieb algebra, Comm. Math. Helv.67 (1992), 571–591Google Scholar
  19. 19.
    W.B.R. Lickorish. Skeins and handlebodies, Pac. J. Math. 159 No. 2 (1993) 337–350Google Scholar
  20. 20.
    N. Lu. Homeomorphisms of a handlebody and Heegaard splittings of the 3-sphereS 3, Top. Proc.13 (1988) 325–350Google Scholar
  21. 21.
    N. Lu. A simple proof of the fundamental theorem of Kirby calculus on links, Trans. AMS, vol 331 No 1 (1992) 143–156Google Scholar
  22. 22.
    G. Masbaum, P. Vogel. Verlinde formulae for surfaces with spin structure, Proceedings of the Joint US-Israel workshop on geometric topology, Haifa, June 1992. Contemp. Math.164, 119–137 (1994)Google Scholar
  23. 23.
    W. Meyer. Die Signatur von Flächenbündeln, Math. Ann.201 (1973), 239–264Google Scholar
  24. 24.
    H. Morton. Invariants of links and 3-manifolds from skein theory and from quantum groups, in Topics in Knot Theory, ed. Bozhüyük, Kluwer (to appear)Google Scholar
  25. 25.
    H. Morton, P. Strickland. Satellites and surgery invariants, in “Knots 90” ed. A. Kawauchi, de Gruyter (1992).Google Scholar
  26. 26.
    N.Yu. Reshetikhin, V.G. Turaev. Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math.103 (1991), 547–597Google Scholar
  27. 27.
    J.D. Roberts. Skeins and mapping class groups, Math. Proc. Camb. Phil. Soc.115 (1994) 53–77Google Scholar
  28. 28.
    J.D. Roberts. Ph.D. Thesis, Cambridge, April 1994Google Scholar
  29. 29.
    R. Stong. Notes on cobordism theory, Princeton Math. Notes, PUP (1958)Google Scholar
  30. 30.
    S. Suzuki. On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math.29 (1977) 111–124Google Scholar
  31. 31.
    V. Turaev, H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Int. J. Math. Vol. 4 No. 2 (1993) 323–358Google Scholar
  32. 32.
    B. Wajnryb. A simple presentation for the mapping class group of an orientable surface, Israel J. Math.45 (1983), 157–174Google Scholar
  33. 33.
    K. Walker. On Witten's 3-manifold invariants, preprint (1991)Google Scholar
  34. 34.
    H. Wenzl. Braids and Invariants of 3-manifolds, Inv. Math.114 (1993), 235–275Google Scholar
  35. 35.
    E. Witten. Quantum field theory and the Jones polynomial, Comm. Math. Phys.121 (1989), 351–399Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • G. Masbaum
    • 1
  • J. D. Roberts
    • 2
  1. 1.CNRSUniversité Paris VII, U.F.R. de MathématiquesParis Cedex 05France
  2. 2.Pembroke CollegeCambridgeEngland
  3. 3.Dept. of Math.Univ. of CaliforniaBerkeleyUSA

Personalised recommendations