Advertisement

Mathematische Annalen

, Volume 302, Issue 1, pp 81–103 | Cite as

Points and topologies in rigid geometry

  • M. van der Put
  • P. Schneider
Article

Keywords

Rigid Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    V.G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Providence 1990Google Scholar
  2. [Be]
    V.G. Berkovich, Etale cohomology for non-archimedean analytic spaces, Publ. Math. IHES78 (1993), 5–161Google Scholar
  3. [BGR]
    S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis, Berlin-Heidelberg-New York 1984Google Scholar
  4. [BL]
    S. Bosch, W. Lütkebohmert, Formal and rigid geometry I. Rigid spaces, Math. Ann.295 (1993), 291–317Google Scholar
  5. [Bou]
    N. Bourbaki, General Topology, Berlin-Heidelberg-New York 1989Google Scholar
  6. [D]
    P. Deligne, Letter to Raynaud, 1992Google Scholar
  7. [E]
    R. Engelking, General topology, Warschau 1977Google Scholar
  8. [FP]
    J. Fresnel, M. van der Put, Géométrie Analytique Rigide et Applications, Progress in Math. vol. 18, 1981Google Scholar
  9. [GP]
    L. Gerritzen, M. van der Put, Schottky groups and Mumford curves, Springer Lect. Notes in Math.817, 1980Google Scholar
  10. [H]
    R. Huber, Continuous valuations, Math. Z.212 (1993), 455–477Google Scholar
  11. [M]
    H. Matsumura, Commutative ring theory, Cambridge 1986Google Scholar
  12. [Meh]
    F. Mehlmann, Ein Beweis für einen Satz von Raynaud über flache Homomorphismen affinoider Algebren, Schriftenr. Math. Univ. Münster, 2. Ser. 19 (1981)Google Scholar
  13. [P]
    M. van der Put, Cohomology on affinoid spaces, Compositio Math.45 (1982), 165–198Google Scholar
  14. [S]
    P. Schneider, Points of rigid analytic varieties, J. reine angew. Math.434 (1993), 127–157Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • M. van der Put
    • 1
  • P. Schneider
    • 2
  1. 1.Mathematisch InstituutRijksuniversiteit GroningenGroningenThe Netherlands
  2. 2.Fachbereich MathematikUniversität MünsterMünsterGermany

Personalised recommendations