Keywords
Rigid Geometry
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [B]V.G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Providence 1990Google Scholar
- [Be]V.G. Berkovich, Etale cohomology for non-archimedean analytic spaces, Publ. Math. IHES78 (1993), 5–161Google Scholar
- [BGR]S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis, Berlin-Heidelberg-New York 1984Google Scholar
- [BL]S. Bosch, W. Lütkebohmert, Formal and rigid geometry I. Rigid spaces, Math. Ann.295 (1993), 291–317Google Scholar
- [Bou]N. Bourbaki, General Topology, Berlin-Heidelberg-New York 1989Google Scholar
- [D]P. Deligne, Letter to Raynaud, 1992Google Scholar
- [E]R. Engelking, General topology, Warschau 1977Google Scholar
- [FP]J. Fresnel, M. van der Put, Géométrie Analytique Rigide et Applications, Progress in Math. vol. 18, 1981Google Scholar
- [GP]L. Gerritzen, M. van der Put, Schottky groups and Mumford curves, Springer Lect. Notes in Math.817, 1980Google Scholar
- [H]R. Huber, Continuous valuations, Math. Z.212 (1993), 455–477Google Scholar
- [M]H. Matsumura, Commutative ring theory, Cambridge 1986Google Scholar
- [Meh]F. Mehlmann, Ein Beweis für einen Satz von Raynaud über flache Homomorphismen affinoider Algebren, Schriftenr. Math. Univ. Münster, 2. Ser. 19 (1981)Google Scholar
- [P]M. van der Put, Cohomology on affinoid spaces, Compositio Math.45 (1982), 165–198Google Scholar
- [S]P. Schneider, Points of rigid analytic varieties, J. reine angew. Math.434 (1993), 127–157Google Scholar
Copyright information
© Springer-Verlag 1995