Advertisement

Mathematische Annalen

, Volume 305, Issue 1, pp 205–248 | Cite as

On the Shafarevich and Tate conjectures for hyperkähler varieties

  • Yves André
Article

Mathematics Subject Classification (1991)

11G 14J 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A93]
    Y. André: Pour une théorie inconditionnelle des motifs, to appear; first version prepublished in “Groupe d'études sur les problèmes diophantiens” (1991–92), Publ. Univ. Paris 6Google Scholar
  2. [Be83a]
    A. Beauville: Variétés kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom.18 (1983) 755–782Google Scholar
  3. [Be83b]
    A. Beauville: Some remarks on Kähler manifolds withc 1=0. In: Progress in Math. Vol. 39, Birkhäuser Boston (1983) pp. 1–26Google Scholar
  4. [BeD85]
    A. Beauville, R. Donagi: The variety of lines of a cubic fourfold. C.R.A.S. Paris 301 serie I (1985) 703–706Google Scholar
  5. [B74]
    F. Bogomolov: On the decomposition of Kähler manifolds with trivial canonical class. Math. USSR. Sb.22 (1974) 580–583Google Scholar
  6. [Bo63]
    A. Borel: Some finiteness properties of adele groups over number fields. Publ. Math. IHES16 (1963) 5–30Google Scholar
  7. [Bo69]
    A. Borel: Introduction aux groupes arithmétiques. Hermann, Paris, 1969Google Scholar
  8. [Bo72]
    A. Borel: Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem. J. Diff. Geom. (1972) 543–560Google Scholar
  9. [C80]
    F. Catanese: The moduli and global period mapping of surfaces withK 2=p g=1: a counterexemple to the global Torelli problem. Comp. Math.41 (1980) 401–414Google Scholar
  10. [D71a]
    P. Deligne: Théorie de Hodge 2. Publ. Math. IHES40 (1971) 5–57Google Scholar
  11. [D71b]
    P. Deligne: Travaux de Shimura. Séminaire Bourbaki, exp. 376. Springer Lecture Notes 180 (1971)Google Scholar
  12. [D72]
    P. Deligne: La conjecture de Weil pour les surfacesK3. Invent. Math.15 (1972) 206–226Google Scholar
  13. [D74]
    P. Deligne: La conjecture de Weil I. Publ. Math. IHES43 (1974) 273–307Google Scholar
  14. [D78]
    P. Deligne: Variétés de Shimura: interprétations modulaires et techniques de construction de modèles canoniques. Proc. Symp. in pure Math. 33 Automorphic forms, part 2 (1978)Google Scholar
  15. [D82]
    P. Deligne: Hodge cycles on abelian varieties (notes by J. Milne) Springer Lecture Notes900 (1982) 9–100Google Scholar
  16. [DM82]
    P. Deligne, J. Milne: Tannakian categories. Springer Lecture Notes900 (1982) 101–228Google Scholar
  17. [FW86]
    G. Faltings, G. Wüstholz: Rational points. Aspects of Math. (1986). Vieweg Verlag, BraunschweigGoogle Scholar
  18. [Fo82]
    J.M. Fontaine: Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux. Invent. Math.65 (1982) 379–409Google Scholar
  19. [G71]
    P.A. Griffiths: Periods of integrals on algebraic manifolds III. Publ. Math. IHES38 (1971) 125–180Google Scholar
  20. [Ja80]
    N. Jacobson: Basic algebra II. Freeman, San Francisco, 1980Google Scholar
  21. [J]
    C. Jordan: Mémoire sur l'équivalence des formes. J. Ec. Polytechnique XLVIII (1880) 112–150Google Scholar
  22. [KS67]
    M. Kuga, I. Satake: Abelian varieties attached to polarized K3 surfaces. Math. Ann.109 (1967) 239–242Google Scholar
  23. [L-P81]
    E. Loojenga, C. Peters: Torelli theorem for Kähler K3 surfaces. Comp. Math.42 (1981) 145–186Google Scholar
  24. [Ma72]
    T. Matsusaka: Polarised varieties with a given Hilbert polynomial. Am. J. Math.94 (1972) 1027Google Scholar
  25. [MaM64]
    T. Matsusaka, D. Mumford: Two fundamental theorems on deformations of polarized varieties. Am. J. Math.86 (1964) 668–683Google Scholar
  26. [Mo85]
    D. Morrison: The Kuga-Satake variety of an abelian surface. J. algebra (1985) 454–476Google Scholar
  27. [Mu84a]
    S. Mukai: Symplectic structure on the moduli space of sheaves on an abelian or K3 surface. Invent. Math.77 (1984) 101–116Google Scholar
  28. [Mu84b]
    S. Mukai: On the moduli space of bundles on K3 surfaces I. Proc. Symp. on vector bundles. Tata Institute, Bombay, 1984Google Scholar
  29. [MFo82]
    D. Mumford, J. Fogarty: Geometric invariant theory (second ed.). Erg. der Math.34 (1982) Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  30. [O80]
    T. Oda: A note on the Tate conjecture for K3 surfaces. Proc. Japan Acad. 56, Ser. A (1980)Google Scholar
  31. [O82]
    T. Oda: Periods of Hilbert modular surfaces. Progress in Math. 1. Birkhäuser, Boston, Basel, Stuttgart, 1982Google Scholar
  32. [Og82]
    A. Ogus: Hodge cycles and crystalline cohomology. Springer Lecture Notes900 (1982) 356–414Google Scholar
  33. [Og84]
    A. Ogus:F-isocrstals and De Rham cohomology II-convergent isocrystals. Duke J. Math.51 (1984) 765–850Google Scholar
  34. [OnV88]
    A. Onishchik, E. Vinberg: Seminar po gruppam Li i algebraicheskim gruppam, Nauka, Mosckow 1988; translation: Lie groups and algebraic groups. Springer, 1990Google Scholar
  35. [Pa88]
    K. Paranjape: Abelian varieties associated to certain K3 surfaces. Compos. Math.68 (1988) 11–22Google Scholar
  36. [PSS73]
    I. Piatetskii-Shapiro, I. Shafarevich: The arithmetic of K3 surfaces. Tr. Mat. Inst. Steklova132 (1973), 44–54 (see also Shafarevich's collected mathematical papers, Springer, Verlag)Google Scholar
  37. [Ra72]
    M. Rapoport: Complément à l'article de P. Deligne “la conjecture de Weil pour les surfaces K3”: Invent. Math.15 (1972) 227–236Google Scholar
  38. [R75]
    I. Reiner: Maximal Orders. Academic Press, London, 1975Google Scholar
  39. [Sa66]
    I. Satake: Clifford algebras and families of abelian varieties. Nagoya J. Math.27-2 (1966) 435–446Google Scholar
  40. [S68]
    J.-P. Serre: Corps locaux. Hermann, Paris (1968)Google Scholar
  41. [S94]
    J.-P. Serre: Propriétés conjecturales des groupes de Galois motiviques et des représentationsl-adiques. Comptes-rendus de la conference de Seattle sur les motifs. Proc. Symp. pure Math.55 (1994), part I, 377–400Google Scholar
  42. [ShI77]
    T. Shioda, H. Inose: On singular K3 surfaces. In: complex analysis and algebraic geometry. Papers dedicated to K. Kodaira. Iwanami Shoten/Cambridge University Press (1977), pp. 119–136Google Scholar
  43. [Ta88]
    S.G. Tankeev: Surfaces of type K3 over number fields, and ℓ representations. Original: Izv.-Akad.-Nauk-SSSR-Ser.-Mat.52 (1988), no. 6, 1252–1271, 1328 Translation: Math.-USSR-Izv.33 (1989), no. 3, 575–595Google Scholar
  44. [Ta90]
    S.G. Tankeev: Surfaces of K3 type over number fields and the Mumford-Tate conjecture. Original: Izv.-Akad.-Nauk-SSSR-Ser.-Mat.54 (1990), no. 4, 846–861 Translation: Math.-USSR-Izv.37 (1991), no. 1, 191–208Google Scholar
  45. [T80]
    A. Todorov: Surfaces of general type withp g=1 and (K,K)=1. Ann. E.N.S.13 (1980) 1–21Google Scholar
  46. [T90]
    A. Todorov: Moduli of hyperkähler manifolds; arithmetical height on the moduli space of Calabi-Yau manifolds. Preprints Max-Planck-Institut für Mathematik, Bonn (1990)Google Scholar
  47. [V86]
    C. Voisin: Théorème de Torelli pour les cubiques deP 5. Invent. Math.86 (1986) 577–601Google Scholar
  48. [V92]
    C. Voisin: Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes. In: London Math. Soc. L.N. Series 179 “complex projective geometry” (Trieste/Bergen 1989) 294–303; Cambridge University Press, 1992Google Scholar
  49. [W58]
    A. Weil: Variétés kähleriennes. Hermann, Paris, 1958Google Scholar
  50. [X85]
    Séminaire Palaiseau; géométrie des surfaces K3: modules et périodes. Astérisque 126, S.M.F., 1985Google Scholar
  51. [Za83]
    Y. Zarhin: Hodge groups of K3 surfaces. J. Reine. Angew. Math.341 (1983) 193–220Google Scholar
  52. [Z77]
    S. Zucker: The Hodge conjecture for cubic fourfolds. Compos. Math.34 (1977) 199–209Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Yves André
    • 1
  1. 1.Institut de MathématiquesParis 5France

Personalised recommendations