Mathematische Annalen

, Volume 305, Issue 1, pp 65–102 | Cite as

Motivic L-functions and Galois module structures

  • D. Burns
  • M. Flach
Article

Mathematics Subject Classification (1991)

11R33 11G40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Be]
    A. Beilinson: Polylogarithms and cyclotomic elements. Preprint.Google Scholar
  2. [Bu]
    D. Burns: On multiplicative Galois structure invariants. To appear in Amer. J. Math. (1995).Google Scholar
  3. [Bu,F]
    D. Burns, M. Flach: On Galois structure invariants associated to Tate motives. Preprint (1995).Google Scholar
  4. [B,K]
    S. Bloch, K. Kato: L-functions and Tamagawa numbers of motives. In: ‘The Grothendieck Festschrift' vol. 1, Progress in Mathematics 86. Birkhäuser, Boston, (1990) pp. 333–400.Google Scholar
  5. [B,S]
    Z.I. Borevich, I.R. Shafarevich: Number Theory. Academic Press, New York, 1967.Google Scholar
  6. [C1]
    T. Chinburg: On the Galois structure of algebraic integers andS-units. Invent. math.74 (1983) 321–349.Google Scholar
  7. [C2]
    T. Chinburg: Exact sequences and Galois module structure. Ann. Math.121 (1985) 351–376.Google Scholar
  8. [C-N,C,Fr,T]
    Ph. Cassou-Noguès, T. Chinburg, A. Fröhlich, M.J. Taylor: L-functions and Galois modules (notes by D. Burns and N.P. Byott). In. L-functions and Arithmetic, J. Coates and M.J. Taylor (eds.), London Math. Soc. Lecture Note Series153. Cambridge University Press Cambridge, 1991.Google Scholar
  9. [C,R]
    C.W. Curtis, I. Reiner: Methods of representation theory (Volume I). Wiley Interscience 1981.Google Scholar
  10. [D,F]
    W.G. Dwyer, E.M. Friedlander: ÉtaleK-theory and arithmetic. Bulletin A.M.S6, 1982, 453–455.Google Scholar
  11. [De]
    P. Deligne: Valeurs de fonctionsL et périods d'intégrales. Proc. Symp. Pure Math.33 (1979), part 2, 313–346.Google Scholar
  12. [F]
    G. Faltings: Crystalline cohomology andp-adic Galois representations. In: Algebraic Analysis, Geometry, and Number Theory. The Johns Hopkins University Press (1989) 25–80.Google Scholar
  13. [F1]
    M. Flach: A generalisation of the Cassels-Tate pairing. Crelle412 (1990), 113–127.Google Scholar
  14. [Fol]
    J-M. Fontaine: Sur certains types de répresentationsp-adiques du groupe de Galois d'un corps local: construction d'un anneau de Barsotti-Tate. Ann. Math.115 (1982) 529–577.Google Scholar
  15. [Fo2]
    J-M. Fontaine: Valeurs spéciales des fonctionsL des motifs. Sém. Bourbaki (1991–1992) no. 751.Google Scholar
  16. [F,M]
    J-M. Fontaine, W. Messing: P-adic periods and p-adic etale cohomology, in Current trends in Arithmetical Algebraic Geometry. Cont. Math.67, A.M.S. (1987) 179–207.Google Scholar
  17. [Fo,P-R1]
    J-M. Fontaine, B. Perrin-Riou: Autour des conjectures de Bloch et Kato, I: Cohomologie galoisienne, II: Structures motiviquesf-closes, III: Le cas général. C.R. Acad. Sci. Paris, 313 série I, (1991) 189–196, 349–356, and 421–428.Google Scholar
  18. [Fo,P-R2]
    J-M. Fontaine, B. Perrin-Riou: Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valuers de fonction L. Proc. Sym. Pure Math. 55 (1994), part I, 599–706.Google Scholar
  19. [Fr1]
    A. Fröhlich:L-values at zero and multiplicative Galois module structure (also Galois-Gauss sums and additive Galois module structure). Crelle397 (1989) 42–99.Google Scholar
  20. [Fr2]
    A. Fröhlich: Units in real abelian fields. Grelle429 (1992) 191–217.Google Scholar
  21. [H]
    K. Haberland: Galois cohomology of algebraic number fields. Deutscher Verlag der Wissenschaften, Berlin (1978).Google Scholar
  22. [K]
    K. Kato: Iwasawa theory andp-adic Hodge theory. Kodai Math. J., 16 no. 1 (1993), 1–31.Google Scholar
  23. [Ki]
    S. Kim: The root number class and Chinburg's Second Invariant. J. Algebra153 (1992) 133–202.Google Scholar
  24. [Kn,M]
    F. Knudsen, D. Mumford: The projectivity of the moduli space of stable curves I: Preliminaries on ‘det’ and ‘Div’, Math. Scand.39 (1976) 19–55.Google Scholar
  25. [L]
    S. Lang: Algebra, 3rd ed. Addison-Wesley (1993).Google Scholar
  26. [M]
    J. Milne: Arithmetic duality theorems. Perspectives in Mathematics1, Academic Press, New York 1986.Google Scholar
  27. [N]
    W. Niziol: Cohomology of crystalline representations. Duke Math. J.71, No. 3 (1993) 747–791.Google Scholar
  28. [Ra]
    M. Rapoport: Comparison of the regulators of Beilinson and Borel, In: Beilinson's Conjectures on Special Values ofL-Functions, M. Rapoport, N. Schappacher, and P. Schneider (eds.), Academic Press, New York 1988.Google Scholar
  29. [Se1]
    J.P. Serre: Cohomologie Galoisienne. Lecture Notes in Mathematics 5. Springer-Verlag (1986).Google Scholar
  30. [Se2]
    J.P. Serre: Représentations linéaires des groupes finis, 2nd edn. Hermann, Paris (1971).Google Scholar
  31. [SGA7]
    A. Grothendieck: Groupes de Monodromie en Géométrie Algébrique (SGA 7 I): Lecture Notes in Mathematics 288. Springer-Verlag (1972).Google Scholar
  32. [T]
    J. Tate: Les Conjectures de Stark sur les FonctionsL d'Artin, (notes d'un cours rédigées par D. Bernardi et N. Schappacher). Progress in Mathematics47. Birkhäuser, Boston-Basel-Stuttgart 1984.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • D. Burns
    • 1
    • 2
  • M. Flach
    • 1
    • 2
  1. 1.Department of MathematicsKing's CollegeLondonEngland
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations