Advertisement

Zeitschrift für Physik A Atoms and Nuclei

, Volume 299, Issue 3, pp 241–244 | Cite as

Pauli-correct separable potentials for composite particle interactions

  • R. Kircher
  • E. W. Schmid
Nuclei

Abstract

A method is presented which allows to derive separable two-cluster interaction potentials from wave functions of the fish bone optical model, or from resonating group wave functions. The two-cluster Pauli effect, as much as it is contained in the off-shell behaviour of the wave functions, is reproduced by the separable interaction. The potentials are real, symmetric and energy-independent. The α-α potential is given as an example.

Keywords

Wave Function Elementary Particle Interaction Potential Composite Particle Particle Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmid, E.W.: Phys. Rev. C21, 691 (1980)Google Scholar
  2. 2.
    Schmid, E.W.:N-Cluster Dynamics and Effective Interaction of Composite Particles. II. The Interaction, unpublishedGoogle Scholar
  3. 3.
    Schmid, E.W.: Z. Phys. A — Atoms and Nuclei297, 105 (1980)Google Scholar
  4. 4.
    Wheeler, J.A.: Phys. Rev.52, 1083 and 1107 (1937)Google Scholar
  5. 5.
    Wildermuth, K., Tang, Y.C.: A Unified Theory of the Nucleus. In: Clustering Phenomena of the Nucleus. Vol. 1, Braunschweig: Vieweg 1977Google Scholar
  6. 6.
    Lovelace, C.: Phys. Rev.135, B 1225 (1964)Google Scholar
  7. 7.
    Ernst, D.J., Shakin, C.M., Thaler, R.M.: Phys. Rev. C8, 46 (1973)Google Scholar
  8. 8.
    Horiuchi, H.: Prog. Theor. Phys. Suppl.62, 90 (1977)Google Scholar
  9. 9.
    Buck, B., Friedrich, H., Wheatley, C.: Phys. A275, 246 (1977)Google Scholar
  10. 10.
    Zaikin, D.A.: Nucl. Phys. A170, 584 (1971)Google Scholar
  11. 11.
    Afzal, S.A., Ahmad, A.A.Z., Ali, S.: Rev. Mod. Phys.41, 247 (1969)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. Kircher
    • 1
  • E. W. Schmid
    • 1
  1. 1.Institut für Theoretische Physik der UniversitätTübingenFederal Republic of Germany

Personalised recommendations