International Journal of Thermophysics

, Volume 17, Issue 2, pp 293–328 | Cite as

Thermal conductivity and viscosity of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123)

  • Y. Tanaka
  • T. Sotani


The thermal conductivity and the viscosity data of CFC alternative refrigerant HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane: CHCI2-CF3) were critically evaluated and correlated on the basis of a comprehensive literature survey. Using the residual transport-property concept, we have developed the three-dimensional surfaces of the thermal conductivity-temperature-density and the viscosity-temperature-density. A dilute-gas function and an excess function of simple form were established for each property. The critical enhancement contribution was taken no account because reliable crossover equations of state and the thermal conductivity data are still missing in the critical region. The correlation for the thermal conductivity is valid at temperatures from 253 to 373 K, pressures up to 30 MPa, and densities up to 1633 kg m−3. The correlation for the viscosity is valid at temperatures from 253 to 423 K, pressures up to 20 MPa. and densities up to 1608 kg·m−3. The uncertainties of the present correlations are estimated to be 50% for both properties, since the experimental data are still scarce and somewhat contradictory in the vapor phase at present.

Key words

2,2-dichloro-1,1,1-trifluoroethane HCFC-123 R123 thermal conductivity thermal diffusivity transport properties viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. O. McLinden and L. Vamling,Heat Pumps for Energy Efficiency and Enrironmental Progress, J. Bosma, ed. (Elsevier Science, Amsterdam, 1993), pp. 115–126.CrossRefGoogle Scholar
  2. 2.
    R. Tillner-Roth and H. D. Baehr.J. Phys. Chem. Ref. Data 1995 (in press).Google Scholar
  3. 3.
    B. A. Younglove and M. O. McLinden.J. Phys. Chem. Ref. Data 1995 (in press).Google Scholar
  4. 4.
    R. Krauss, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephan,Int. J. Thermophys. 14:951 (1993).CrossRefADSGoogle Scholar
  5. 5.
    Japanese Association of Refrigeration and Japan Flon Gas Association (ed.),Thermophysiral Properties of Environmentally Acceptable Fluorocarbons-HFC-134a and HCFC-123 (Japan Association of Refrigeration, Tokyo, Japan, 1991).Google Scholar
  6. 6.
    A. Laeseeke,Viskosität und Wärmeleitfähigkeit als Thermodynamische Zustandsgrössen und ihre Darstellung durch Zustandsgleiehungen. Fortschr.-Ber. VDI, Reihe 3. Nr. 117. VDI-Verlag, Düsseldorf (1986).Google Scholar
  7. 7.
    K. Steplian, R. Krauss, and A. Laeseeke,J. Phys. Chem. Ref. Data 16:993 (1987).CrossRefADSGoogle Scholar
  8. 8.
    V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat,J. Phys. Chem. Ref. Data 19:763 (1991).CrossRefADSGoogle Scholar
  9. 9.
    A. Lacsecke, R. Krauss, K. Stephan, and W. Wagner,J. Phys. Chem. Ref. Data 19:1039 (1990).ADSGoogle Scholar
  10. 10.
    S. Hendl, J. Millat, E. Vogel, V. Vesovic. W. A. Wakeham, J. Luettmer-Strathmann, J. V. Sengers, and M. J. Assael,Int. J. Thermophys 15:1 (1994).CrossRefADSGoogle Scholar
  11. 11.
    V. Vesovic, W. A. Wakeham, J. Luettmer-Strathmann, J. V. Sengers, J. Millat, E. Vogel, and M. J. Assael,Int. J. Thermophys. 15:33 (1994).CrossRefADSGoogle Scholar
  12. 12.
    Y. Tanaka, A. Miyake, H. Kashiwagi, and T. Makita,Int. J. Thermophys. 9:465 (1988).CrossRefADSGoogle Scholar
  13. 13.
    Y. Kobayashi, H. Ashiki, Y. Nagasaka, and A. Nagashima,Proc. 2nd Asian Thermophys. Prop. Conf. 1:61 (1989).Google Scholar
  14. 14.
    J. Yata. C. Kawashima, M. Flori. and T. Minantiyama,Proc. 2nd Asian Thermophys. Prop. Conf. (1989). pp. 201–205.Google Scholar
  15. 15.
    M. Fukushima and N. Watanabe,Preprint 54th Ann Meet. Japan. Soc. Chem. Eng. (1989), p. 210.Google Scholar
  16. 16.
    J. Yata. Kyoto Institute of Technology. Kyoto. Japan. private communication ( 1991).Google Scholar
  17. 17.
    U. Gross, Y. W. Song. J. Kallweit, and E. Hahne. Proc.Meet. Comm. BI HF/HR, Herzlia. Israel, (1990). p. 103.Google Scholar
  18. 18.
    I. R. Shankland,Proc. AICh E Spring Natl. Meet. Symp. Global Climate Change Refrig. Prop., Orlando, FL. Mar. 18–22 (199(1).Google Scholar
  19. 19.
    Y. Kobayaslii, Y. Ucno. Y. Nagasaka, and A. Nagashima.Proc. 12th Eur. Conf. Thermophys. Prop., Vienna. Austria. Sept. 24–28 (1990).Google Scholar
  20. 20.
    Y. Ueno. M. Sekikawa. Y. Nagasaka. and A. Nagashima.Proc. 12th Japan Symp. Thermophys. Prop. (1990), pp. 123–126.Google Scholar
  21. 21.
    Y. Ueno, Y. Kobayashi, Y. Nagasaka, and Y. Nagashima,Trans. Jpn. Soc. Mech. Eng. B57:3169 (1991).CrossRefGoogle Scholar
  22. 22.
    U. Gross, Y. W. Song, and F. Hahne,Int. J. Thermophys. 13:957 (1992).CrossRefADSGoogle Scholar
  23. 23.
    M. J. Assael and E. Karagiannidis,Int. J. Thermophys. 14:183 (1993).CrossRefADSGoogle Scholar
  24. 24.
    J. E. S. Venart. Fire Science Centre and Mechanical Engineering; Department. University of New Brunswick. Fredericton. NB. Canada. private communication ( 1993).Google Scholar
  25. 25.
    O. B. Tsvetkoc, Yu. A. Laptev, and A. G. Asambaev.Int. J. Therinophys. 15:2113 (1994).Google Scholar
  26. 26.
    R. G. Richard and I. R. Shankland,Int. J. Thermophys. 10:673 (1989).CrossRefADSGoogle Scholar
  27. 27.
    Y. Tanaka, S. Matsuo. C. Takata, and R. Yamamoto.Proc. China-Japan Chem. Eng. Conf., Tianjin. China. Oct. (199 ). pp. 80–87.Google Scholar
  28. 28.
    Y. Ueno. Y. Nagasaka. and A.Nagashima.Proc. 12th Japan .Symp. Thermophys. Prop. (1991), pp. 225–228.Google Scholar
  29. 29.
    R. Yamamoto, S. Matsuo, and Y. Tanaka,Int. J. Thermophys. 14:79 (1993).CrossRefADSGoogle Scholar
  30. 30.
    K. Ohta, al. M. S.thesis, Kobe University, Kobe, Japan (1988).Google Scholar
  31. 31.
    A. Kumagai and S. Takahashi,Int. J. Thermophys. 12:105 (1991).CrossRefADSGoogle Scholar
  32. 32.
    D. E. Diller. A. S. Aragon, and A. Laesecke,Proc. ASME 11th Symp. Thermophys. Prop. Boulder. CO. June 23–27 (1991).Google Scholar
  33. 33.
    D. E. Diller, A. S. Aragon, and A. Laesecke,Fluid Phase Equil. 88:251 (1993).CrossRefGoogle Scholar
  34. 34.
    T. Okubo and A. Nagashima,Proc. 11th Symp. Thermophys. Prop., Boulder, CO, June 23–27 (1991).Google Scholar
  35. 35.
    T. Okubo and A. Nagashima,Int. J. Thermophys. 13:401 (1992).CrossRefADSGoogle Scholar
  36. 36.
    K. D. Peckover. S. Lagasse, and W. K. Snelson. National Research Council Canada, Ottawa. Ontario, KIA OR6 Canada, private communication (1993).Google Scholar
  37. 37.
    M. Takahashi. C. Yokoyama, and S. Takahashi,Proc. 11th Japan Symp. Thermophys. Prop. (1990). pp. 115 118.Google Scholar
  38. 38.
    H. Nabizadeh and F. Mayinger,Proc. 12th Eur. Conf. Thermophys. Prop., Vienna. Austria. Sept. 24–28 (1990).Google Scholar
  39. 39.
    H. Nabizadeh and F. Mayinger,High Temp.-High Press. 24:221 (1992).Google Scholar
  40. 40.
    M. Takahashi, C. Yokoyama, and S. Takahashi,J. Chem. Eng. Data 32:98 (1987).CrossRefGoogle Scholar
  41. 41.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids (John Wiley & Sons, New York, 1967). Chap. 8.Google Scholar
  42. 42.
    J. Kestin, S. T. Ro, and W. A. Wakeliam,Physica 58:165 (1972).CrossRefADSGoogle Scholar
  43. 43.
    G. H. Wang, J. F. S. Venart, and R. C. Prasad,Proc. 3rd Asian Thermophys. Prop. Conf., Beijing. China, (1992). pp. 399–105.Google Scholar
  44. 44.
    J. V. Sengers,Int. J. Thermophys. 6:203 (1985).CrossRefADSGoogle Scholar
  45. 45.
    G. A. Olcliowy and J. V. Sengers,Phys. Rev. Lett. 61:15 (1988).CrossRefADSGoogle Scholar
  46. 46.
    G. A. Olchowy and J. V. Sengers,Int. J. Thermophys. 10:417 (1989).CrossRefADSGoogle Scholar
  47. 47.
    M. Ibreighith, M. Fiebig, A. Leipertz, and G. Wu,Fluid Phase Equil. 80:323 (1992).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Y. Tanaka
    • 1
  • T. Sotani
    • 1
  1. 1.Department of Chemical Science and Engineering, Faculty of EngineeringKobe UniversityKobeJapan

Personalised recommendations