Mathematische Annalen

, Volume 283, Issue 4, pp 551–572

The symmetric-squareL-function attached to a cuspidal automorphic representation ofGL3

  • S. J. Patterson
  • I. I. Piatetski-Shapiro


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, J.-N., Deligne, P., Kazhdan, D., Vigneras, M.-F.: Représentations des groupes réductifs sur un corps local. Paris: Hermann 1984Google Scholar
  2. 2.
    Clozel, L.: On limit multiplicities of discrete series representations in spaces of automorphic forms. Invent. Math.83, 265–284 (1984)Google Scholar
  3. 3.
    Flicker, Y.Z.: The symmetric square. (Series of manuscripts)Google Scholar
  4. 4.
    Gelbart, S., Jacquet, H.: A relation between automorphic representations ofGL(2) andGL(3). Ann. Sci. Ec. Norm. Super., IV. Ser.11, 471–542 (1978)Google Scholar
  5. 5.
    Gelbart, S., Piatetski-Shapiro, I.I.: Distinguished representations and modular forms of halfintegral weight. Invent. Math.59, 145–188 (1980)Google Scholar
  6. 6.
    Gelbart, S., Piatetski-Shapiro, I.I.: On Shimura's correspondence for modular forms of halfintegral weight. In: Automorphic forms, representation theory and arithmetic. Bombay: Tata Institute 1979Google Scholar
  7. 7.
    Jacquet, H., Shalika, J.: On Euler products and the classification of automorphic representations. Am. J. Math.103, 499–558, 777–815 (1981)Google Scholar
  8. 8.
    Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Automorphic forms onGL(3). Ann. Math.109, 169–257 (1979)Google Scholar
  9. 9.
    Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Rankin-Selberg convolutions. Am. J. Math.105, 367–464 (1983)Google Scholar
  10. 10.
    Kazhdan, D., Patterson, S.J.: Metaplectic forms. Publ. Math. IHES59, 35–142 (1984)61, 149 (1985)Google Scholar
  11. 11.
    Langlands, R.P.: On the functional equations satisfied by Eisenstein series. (Lecture Notes Mathematics, Vol.544). Berlin Heidelberg New York: Springer 1976Google Scholar
  12. 12.
    Piatetski-Shapiro, I.I.: Euler subgroups. In: Lie groups and their representations (Gelfand, I.M., ed.). Bristol: Hilger 1975Google Scholar
  13. 13.
    Rankin, R.A.: Contributions to the theory of Ramanujan's function τ(n) and similar arithmetical functions, I, II, III. Proc. Cambridge Phil Soc.35, 351–356, 357–372 (1939);36, 150–151 (1940)Google Scholar
  14. 14.
    Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturw. B XLIII 47–50 (1940)Google Scholar
  15. 15.
    Shahidi, F.: On the Ramanujan conjecture and finiteness of poles for certainL-functions. Ann. Math.127, 547–584 (1988)Google Scholar
  16. 16.
    Shimura, G.: Modular forms of half-integral weight. In: Modular forms in one variable, I. (Lecture Notes Mathematics, Vol. 320). Berlin Heidelberg New York: Springer 1973Google Scholar
  17. 17.
    Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc.31, 79–98 (1975)Google Scholar
  18. 18.
    Shintani, T.: On an explicit formula forp-adic “class-I Whittaker functions”. Proc. Jap. Acad., Ser.A 52, 180–182 (1976)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • S. J. Patterson
    • 1
  • I. I. Piatetski-Shapiro
    • 2
  1. 1.Mathematisches Institut der UniversitätGöttingenGermany
  2. 2.Department of MathematicsTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations