Quasi-stationary detection of transient absorption of a dissociating molecule

  • H. Bovensmann gen. Schröer
  • E. Tiemann


Using the forth harmonic of a Nd-YAG laser at 266 nm TlI was dissociated and the dissociation was observed by a transient absorption due to a transition from the repulsive potential, which correlates to T1 (6p2P3/2) and I, to the repulsive potential with the asymptote T1 (7s) and I. The experiment is performed with quasi-stationary spectroscopy in the nanosecond time domain, but detects transients effects by asymmetric absorption profiles in the frequency domain. Simulations applying Bloch equations with time dependent molecular energies are able to reproduce the observations and give information on the difference potential between the two molecular states involved and the transition dipole moment. The results are also in good agreement with fs experiments from other authors.


32.70.Jz 33.80.Gj 34.50.R 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walkup, R.E., Misewich, J.A., Glownia, J.H., Sorokin, P.P.: Phys. Rev. Lett.65, 2366 (1990)Google Scholar
  2. 2.
    Rosker, M.J., Dantus, M., Zewail, A.H.: J. Chem. Phys.89, 6113 (1988)Google Scholar
  3. 3.
    Walkup, R.E., Misewich, J.A., Glownia, J.H., Sorokin, P.P.: J. Chem. Phys.94, 3389 (1991)Google Scholar
  4. 4.
    Allard, N., Kielkopf, J.: Rev. Mod. Phys.54, 1103 (1982)Google Scholar
  5. 5.
    Débarre, A., Cahuzac, P.: Ann. Phys.12, 313 (1987)Google Scholar
  6. 6.
    Schinke, R.: Photodissociation dynamics. Cambridge: Cambridge University Press 1993Google Scholar
  7. 7.
    Foth, H.J., Polanyi, J.C., Telle, H.H.: Phys. Chem.86, 5027 (1982)Google Scholar
  8. 8.
    Bovensmann gen. Schröer, H., Tiemann, E.: Z. Phys. D31, 67 (1994)Google Scholar
  9. 9.
    Lee, H.W., George, T.F.: Phys. Rev. A35, 4977 (1987)Google Scholar
  10. 10.
    Lüthy, W.: Appl. Phys. B40, 121 (1986)Google Scholar
  11. 11.
    Ludewigt, K., Brinkmann, K., Wellegehausen, B.: Appl. Phys. B33, 133 (1984)Google Scholar
  12. 12.
    Kieckhäfer, J., Knöckel, H., Tiemann, E.: Chem. Phys. Lett.160, 570 (1989)Google Scholar
  13. 13.
    Bovensmann gen. Schröer, H., Knöckel, H., Tiemann, E.: Mol. Phys.73, 813 (1991)Google Scholar
  14. 14.
    Sinha, M.P., Su, R.T., Riley, S.J.: J. Chem. Phys.70, 4431 (1979)Google Scholar
  15. 15.
    Schilowitz, A., Wiesenfeld, J., Young, R.: J. Phys. Chem.86, 692 (1982)Google Scholar
  16. 16.
    van Veen, N.J.A., de Vries, M.S., Baller, T., de Vries, A.E.: Chem. Phys.55, 371 (1981)Google Scholar
  17. 17.
    Moore, C.E.: Atomic energy levels. Nat. Bur. Std., Vol. III, pp. 202–201. Washington D.C.: USGPO 1958Google Scholar
  18. 18.
    Li, H.H., Humphreys, C.J.: JOSA64, 1072 (1974)Google Scholar
  19. 19.
    Hanna, D.C., Yuratchi, M.A., Cotter, D.: Nonlinear optics of free atoms and molecules. Berlin Heidelberg New York: Springer 1979Google Scholar
  20. 20.
    Gallagher, A., Lurio, A.: Phys. Rev.136, A87 (1964)Google Scholar
  21. 21.
    Lisitsa, V.S., Yakovlenko, S.I.: Sov. Phys. JETP39, 759 (1974)Google Scholar
  22. 22.
    Landau, L.: Z. Sowjetunion2, 46 (1932)Google Scholar
  23. 23.
    Zener, C.: Proc. R. Soc. London Ser. A137, 696 (1932)Google Scholar
  24. 24.
    Shore, B.W.: The theory of coherent atomic excitation. Vol. 1 + 2. New York: Wiley 1989Google Scholar
  25. 25.
    Bluhm, H.: Doctoral thesis, University Hannover 1992Google Scholar
  26. 26.
    Gehrke, C.: Diploma thesis, University Hannover 1990Google Scholar
  27. 27.
    Brühl, R., Kapetanakis, J., Zimmermann, D.: J. Chem. Phys.94, 5865 (1991)Google Scholar
  28. 28.
    Czuchaj, E., Sienkiewicz, J.: Z. Naturforsch.39a, 513 (1984)Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • H. Bovensmann gen. Schröer
    • 1
  • E. Tiemann
    • 1
  1. 1.Institut für Atom- und Molekülphysik, Abteilung SpektroskopieUniversität HannoverHannoverGermany

Personalised recommendations