, Volume 96, Issue 3, pp 269–283 | Cite as

The distribution of the transposable elementBari-1 in theDrosophila melanogaster andDrosophila simulans genomes

  • C. Caggese
  • S. Pimpinelli
  • P. Barsanti
  • R. Caizzi


The distribution of the transposable elementBari-1 inD. melanogaster andD. simulans was examined by Southern blot analysis and byin situ hybridization in a large number of strains of different geographical origins and established at different times.Bari-1 copies mostly homogeneous in size and physical map are detected in all strains tested. Both inD. melanogaster and inD. simulans a relatively high level of intraspecific insertion site polymorphism is detectable, suggesting that in both speciesBari-1 is or has been actively transposing. The main difference between the two sibling species is the presence of a large tadem array of the element in a well-defined heterochromatic location of theD. melanogaster genome, whereas such a cluster is absent inD. simulans. The presence ofBari-1 elements with apparently identical physical maps in allD. melanogaster andD. simulans strains examined suggests thatBari-1 is not a recent introduction in the genome of themelanogaster complex. Structural analysis reveals unusual features that distinguish it from other inverted repeat transposons, whereas many aspects are similar to the widely distributedTc1 element ofC. elegans.

Key words

Bari-1 Drosophila genomic organization transposons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashburner, M., 1989.Drosophila: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  2. Anxolabéhère, D., M.G. Kidwell & G. Périquet, 1988. Molecular characteristics of diverse populations are consistent with a recent invasion ofDrosophila melanogaster by mobile P elements. Mol. Biol. Evol. 5:252–269.PubMedGoogle Scholar
  3. Boussy, I.A. & S.B. Daniels, 1991. Hobo transposable elements inDrosophila melanogaster andD. simulans. Genet. Res. Camb. 58:27–34.Google Scholar
  4. Brezinsky, L., G.V.L. Wang, T. Humphreys & J. Hunt, 1990. The transposable element Uhu from HawaiianDrosophila-member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res. 18:2053–59.PubMedGoogle Scholar
  5. Caizzi, R., C. Caggese & S. Pimpinelli, 1993. Bari-1, a new transposon-like family inDrosophila melanogaster with a unique heterochromatic organization. Genetics 133:335–345.PubMedGoogle Scholar
  6. Calvi, B.R., T.J. Hong, S.D. Findley & W.M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposon inDrosophila and plants: hobo, Activator, and Tam3. Cell 68:465–471.Google Scholar
  7. Capy, P., D. Anxolabéhère & T. Langin, 1994. The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends in Genetics 10:7–12.PubMedGoogle Scholar
  8. Cariou, M. L., 1987. Biochemical phylogeny of the eight species in theDrosophila melanogaster species subgroup, includingD. sechellia andD. orena. Genet. Res. 50:181–185.PubMedGoogle Scholar
  9. Cohn, V.H., M.A. Thompson & G.P. Moore, 1984. Nucleotide sequence comparison of the Adh gene in three drosophilids. J. Mol. Evol. 20:31–37.PubMedGoogle Scholar
  10. Collins, J., E. Forbes & P. Anderson, 1939. The Tc3 family of transposable genetic elements inCaenorhabditis elegans. Genetics 121:47–55.Google Scholar
  11. Crozatier, M., C. Vaury, I. Busseau, A. Pélisson & A. Bucheton, 1988. Structure and genomic organization of I elements involved in I-R hybrid dysgenesis inDrosophila melanogaster. Nucleic Acids Res. 16:9199–9213.PubMedGoogle Scholar
  12. Daniels, S.B., A. Chovnick & I.A. Boussy, 1990. Distribution of hobo transposable elements in the genusDrosophila. Mol. Biol. Evol. 7:589–606.PubMedGoogle Scholar
  13. Daniels, S.B., K.R. Peterson, L.D. Strausbaugh, M.G. Kidwell & A. Chovnick, 1990. Evidence for horizontal transmission of the P transposable element betweenDrosophila species. Genetics 124:339–355.PubMedGoogle Scholar
  14. Danilevskaya, O.N., D.A. Petrov, M.N. Pavlova, A. Koga, E.V. Kurenova & D.L. Hartl, 1992. A repetitive DNA element, associated with telomeric sequences inDrosophila melanogaster, contains open reading frames. Chromosoma 102:32–40.PubMedGoogle Scholar
  15. Di Nocera, P.P., F. Graziani & G. Lavorgna, 1986. Genomic and structural organization ofD. melanogaster G elements. Nucleic Acids Res. 14:675–691.PubMedGoogle Scholar
  16. Emmons, S.W., L. Yesner, K.S. Ruan & D. Katzenberg, 1983. Evidence for a transposon inCaenorhabditis elegans. Cell 32:55–65.PubMedGoogle Scholar
  17. Feinberg, A.P. & B. Vogelstein, 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anl. Biochem. 132:6–13.Google Scholar
  18. Finnegan, D.J. & D.H. Fawcett, 1986. Transposable elements inDrosophila melanogaster. In: N. Maclean (ed) Oxford surveys on eukaryotic genes, vol 3, pp 1–62.Google Scholar
  19. Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends in Genetics 5:103–107.PubMedGoogle Scholar
  20. Franz, G. & C. Savakis, 1991. Minos, a new transposable element fromDrosophila hydei, is a member of the Tc1-like family of transposon. Nucleic Acids Res. 19:6646.PubMedGoogle Scholar
  21. Ganetzky, B., 1977. On the component of segregation distortion inDrosophila melanogaster. Genetics 86:321–355.PubMedGoogle Scholar
  22. Gerasimova, T., L. Mizrokhi & G. Georgiev, 1984. Transposition bursts in genetically unstableDrosophila melanogaster. Nature 309:714–716.Google Scholar
  23. Heierhorst, J., K. Lederis & D. Richter, 1992. Presence of a member of the Tc1-like transposon family from nematode andDrosophila within the vasotocin gene of a primitive vertebrate, and the Pacific hagfishEptatretus stouti. Proc. Natl. Acad. Sci. USA 89: 6798–6802.PubMedGoogle Scholar
  24. Henikoff, S., 1992. Detection ofCaenorhabditis transposon homologs in diverse organisms. New Biol. 4:382–388.PubMedGoogle Scholar
  25. Henikoff, S. & R.H.A. Plasterk, 1988. Related transposon inC. elegans andD. melanogaster. Nucleic Acids Res. 16:6234.PubMedGoogle Scholar
  26. Jacobson, J.W., M.M. Medhora & D.L. Hartl, 1986. Molecular structure of a somatically unstable transposable element inDrosophila. Proc. Natl. Acad. Sci. USA 83:8684–8688.PubMedGoogle Scholar
  27. Jakubczak, J.L., Y. Xiong & T.H. Eickbush, 1990. Type I (R1) and Type II (R2) ribosomal DNA insertions ofDrosophila melanogaster are retrotransposable elements closely related to those ofBombyx mori. J. Mol. Biol. 212:37–52.PubMedGoogle Scholar
  28. Karess, R.E. & G.M. Rubin, 1984. Analysis of P transposable element functions inDrosophila. Cell 38:135–146.PubMedGoogle Scholar
  29. Kidwell, M.G., 1983. Evolution of hybrid dysgenesis determinants inDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 80: 1655–1659.PubMedGoogle Scholar
  30. Kidwell, M.G., 1992. Horizontal transfer. Curr. Opin. Genet. Develop. 2:868–873.Google Scholar
  31. Kim, A., C. Terzian, P. Santamaria, A. Pelisson, N. Prudhomme & A. Bucheton, 1994. Retroviruses in Invertebrates — The Gypsy retrotransposon is apparently an infectious retrovirus ofDrosophila melanogaster. Proc. Nat. Acad. Sci. USA 91:1285–1289.PubMedGoogle Scholar
  32. Lachaise, D., M.L. Cariou, J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1988. Historical biogeography of theDrosophila melanogaster species subgroup. Evol. Biol. 22:159–225.Google Scholar
  33. Lankenau, D-H., P. Huijser, E. Jansen, K. Miedema & W. Hennig, 1990. DNA sequence comparison of micropia transposable elements fromDrosophila hydei andDrosophila melanogaster. Chromosoma 99:111–117.PubMedGoogle Scholar
  34. Lemeunier, F., J.R. David, L. Tsacas & M. Ashburner, 1986. Themelanogaster species group, pp 147–256. The Genetics and Biology ofDrosophila, Vol 3e, edited by M. Ashburner & H.L. Carson, Academic Press, London.Google Scholar
  35. MacDonald, J.F., 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Develop. 3:855–864.Google Scholar
  36. Maniatis, T., E.F. Fritsch & J. Sambrook, 1982. Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor.Google Scholar
  37. Maruyama, K. & D.L. Hartl, 1991a. Evidence for interspecific transfer of the transposable element mariner betweenDrosophila andZaprionus. J. Mol. Evol. 33:514–524.PubMedGoogle Scholar
  38. Maruyama, K. & D.L. Hartl, 1991b. Evolution of the transposable element mariner inDrosophila species. Genetics 128:319–329.PubMedGoogle Scholar
  39. Miklos, G.L.G., M.T. Yamamoto, J. Davies & V. Pirrotta, 1988. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin ofDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 85: 2051–2055.PubMedGoogle Scholar
  40. Mizrokhi, L.J. & A.M. Mazo, 1990. Evidence for horizontal transmission of mobile element jockey between distantDrosophila species. Proc. Natl. Acad. Sci. USA 87:9216–9220.PubMedGoogle Scholar
  41. Mullins, M.C., D.C. Rio & G.M. Rubin, 1989. Cis-acting DNA sequence requirements for P-element transposition. Genes Dev. 3:729–738.PubMedGoogle Scholar
  42. O'Hare, K. & G.M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in theDrosophila melanogaster genome. Cell 34:25–35.PubMedGoogle Scholar
  43. Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284:604–607.PubMedGoogle Scholar
  44. Pardue, M.L., 1986. In situ hybridization to DNA of chromosomes and nuclei, pp. 11–137. InDrosophila: A Practical Approach, edited by D.B. Roberts, IRL Press, Oxford.Google Scholar
  45. Pimpinelli, S. & P. Dimitri, 1989. Cytogenetic analysis of segregation distortion inDrosophila melanogaster: the cytological organization of the Responder (Rsp) locus. Genetics 121:765–772.PubMedGoogle Scholar
  46. Robertson, H.M., 1993. The mariner transposable element is widespread in insects. Nature 362:241–245.PubMedGoogle Scholar
  47. Rosenzweig, B., L.W. Liao & D. Hirsh, 1983. Sequence of theC. elegans transposable element Tc1. Nucleic Acids Res. 11: 4201–4209.PubMedGoogle Scholar
  48. Rubin, G.M. & A.C. Spradling, 1982. Genetic transformation ofDrosophila with transposable element vectors. Science 218: 348–353.PubMedGoogle Scholar
  49. Simmons, G.M., 1992. Horizontal transfer of hobo transposable elements within theDrosophila melanogaster species complex: Evidence from DNA sequencing. Mol. Biol. Evol. 9:1050–1060.PubMedGoogle Scholar
  50. Simonelig, M., C. Bazin, A. Pelisson & A. Bucheton, 1988. transposable and nontransposable elements similar to the I factor involved in inducer-reactive (IR) hybrid dysgenesis inDrosophila melanogaster coexist in variousDrosophila species. Proc. Natl. Acad. Sci. USA 85:1141–1145.PubMedGoogle Scholar
  51. Spradling, A.C. & G.M. Rubin, 1981.Drosophila genome organization: conserved and dynamic aspects. Annu. Rev. Genet. 15: 219–264.PubMedGoogle Scholar
  52. Stacy, S.N., R.A. Lansman, H.W. Brock & T. Grigliatti, 1986. Distribution and conservation of mobile elements in the genusDrosophila. Mol. Biol. Evol. 6:522–534.Google Scholar
  53. Streck, R.D., J.E. MacGaffey & S.K. Beckendorf, 1986. The structure of hobo transposable elements and their insertion sites. EMBO J. 5:3615–3623.Google Scholar
  54. Throckmorton, L.H., 1975. The phylogeny, ecology, and geography ofDrosophila, pp 421–469. In Handbook of Genetics, edited by R.C. King, Plenum Press, New York.Google Scholar
  55. Vaury, C., A. Bucheton & A. Pelisson, 1989. The β heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98:215–224.PubMedGoogle Scholar
  56. Wu, C.I., T.W. Lyttle, M.L. Wu & G.F. Lin, 1988. Association between a satellite DNA sequence and the Responder (Rsp) of Segregation Distorter inDrosophila melanogaster. Cell 54: 179–189.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • C. Caggese
    • 1
  • S. Pimpinelli
    • 2
  • P. Barsanti
    • 1
  • R. Caizzi
    • 1
  1. 1.Instituto di GeneticaUniversità di BariBariItaly
  2. 2.Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia MolecolareUniversità di Roma ‘La Sapienza’RomaItaly

Personalised recommendations