Zeitschrift für Physik A Atoms and Nuclei

, Volume 313, Issue 4, pp 253–262 | Cite as

Laser-enhanced electron-ion capture and antihydrogen formation

  • R. Neumann
  • H. Poth
  • A. Winnacker
  • A. Wolf


The electron-ion capture rate for low electron energies is calculated for various electron velocity distributions. Capture rates for electron-ion recombination stimulated by irradiation with light are evaluated. The results are applied to electron cooling and to positron-antiproton recombination to form antihydrogen. It is shown that laser-induced capture is a powerful method to study the electron cooling process and to maximize the antihydrogen rate. With this technique a pulsed antihydrogen beam of selectable energy and well collimated with an intensity of a few atoms per second can be anticipated.


Recombination Elementary Particle Electron Energy Velocity Distribution Powerful Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lefèvre, P., Möhl, D., Plass, G.: 11th Int. Conf. on High-Energy Accelerators, Geneva, 1980, p. 819. Basel: Birkhäuser Verlag 1980Google Scholar
  2. 2.
    Hütten, L., Poth, H., Wolf, A., Haseroth, H., Hill, Ch.: The electron cooling device for LEAR. Gastaldi, U. (ed.). Proc. Workshop on Physics at LEAR with Low-Energy Cooled Antiprotons, Erice, May 1982 (to be published)Google Scholar
  3. 3.
    Budker, G.I., Skrinsky, A.N.: Sov. Phys.-Usp.21, 277 (1978)Google Scholar
  4. 4.
    Bell, M., Chaney, J., Herr, H., Krienen, F., Møller-Petersen, P., Petrucci, G.: Nucl. Instrum. Methods190, 237 (1981)Google Scholar
  5. 5.
    Herr, H., Möhl, D., Winnacker, A.: Production of and Experimentation with Antihydrogen at LEAR. Gastaldi, U. (ed.). Proc. Workshop on Physics at LEAR with Low-Energy Cooled Antiprotons, Erice, May 1982 (to be published)Google Scholar
  6. 6.
    Derbenev, Ya.S., Skrinsky, A.N.: Part. Accel.8, 235 (1978)Google Scholar
  7. 7.
    Stobbe, M.: Ann. Phys.7, 661 (1930)Google Scholar
  8. 8.
    Bethe, H., Salpeter, E.: Quantum mechanics of one- and two-electron systems. In: Handbuch der Physik. Vol. 35, p. 88. Berlin, Heidelberg, New York:Springer 1957Google Scholar
  9. 9.
    Baratella, P., Puddu, G., Quarati, F.: Z. Phys. A — Atoms and Nuclei300, 263 (1981)Google Scholar
  10. 10.
    Spitzer, L.: Physics of fully ionized gases. New York: Interscience 1956Google Scholar
  11. 11.
    Bell, M., Bell, J.: Part. Accel.12, 49 (1982) and references thereinGoogle Scholar
  12. 12.
    Budker, G.I., Dikansky, N.S., Kudelainen, V.I., Meshkov, I.N., Parchomchuk, V.V., Pestrikov, D.V., Skrinsky, A.N., Sukhina, B.N.: Part. Accel.7, 197 (1976)Google Scholar
  13. 12a.
    Studies on electron cooling of heavy particle beams, CERN 77-08 (1977)Google Scholar
  14. 13.
    Parchomchuk, V.V.: Private communicationGoogle Scholar
  15. 14.
    Junker, B.R., Bardsley, J.N.: Phys. Rev. Lett.28, 1227 (1972)Google Scholar
  16. 14a.
    Kolos, W., Morgan, D.L., Schrader, D.M., Wolhiewicz, L.: Phys. Rev. A11, 1792 (1975)Google Scholar
  17. 14b.
    Câmpaneu, R.I., Beu, T.: Phys. Lett.93 A, 223 (1983)Google Scholar
  18. 15.
    Mills, A.P.: Appl. Phys.23, 189 (1980)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Neumann
    • 1
  • H. Poth
    • 2
    • 3
  • A. Winnacker
    • 1
  • A. Wolf
    • 2
    • 3
  1. 1.Physikalisches InstitutUniversität HeidelbergFederal Republic of Germany
  2. 2.Kernforschungszentrum KarlsruheInstitut für KernphysikFederal Republic of Germany
  3. 3.Visitor at CERNGenevaSwitzerland

Personalised recommendations