International Journal of Thermophysics

, Volume 17, Issue 4, pp 731–757 | Cite as

Transport properties of 1,1-difluoroethane (R152a)

  • R. Krauss
  • V. C. Weiss
  • T. A. Edison
  • J. V. Sengers
  • K. Stephan
Article

Abstract

Based on reliable. carefully selected data sets. equations for the thermal conductivity and the viscosity of the refrigerant R 112a are presented. They are valid at temperatures from 240 to 440 K, pressures up to 20 MPa. and densities up to 1050 kg · m−3. including the critical region.

Key words

1,1-difluoroethane correlation critical region HFC-152a R152a thermal conductivity transport properties viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Wuebbles,Int. J. Refrig. 17:7 (1994).Google Scholar
  2. 2.
    R. Krauss and K. Stephan,Proc. Joint Meet. HR Comm. B1, B2, E1, E2 (Padova 1994). p. 363.Google Scholar
  3. 3.
    R. Krauss and K. Stephan,DKV-Tagungsbericht (Bonn 1994)21:159 (1994).Google Scholar
  4. 4.
    J. V. Sengers,Int. J. Thermophys. 6:203 (1985).Google Scholar
  5. 5.
    J. V. Sengers, inSupercritical Fluids, E. Kiran ad J. M. H. Levelt Sengers, eds. (Kluwer, Dordrecht, 1994), p. 231.Google Scholar
  6. 6.
    A. van Pelt and J. V. Sengers,J. Supercrit. Fluids 8:81 (1995).Google Scholar
  7. 7.
    R. Tillner-Roth,Int. J. Thermophys. 16:91 (1995).Google Scholar
  8. 8.
    V. Vesovic, W. A. Wakeham, G. A. Olchowy, J. V. Sengers, J. T. R. Watson, and J. Millat,J. Phys. Chem. Ref. Data 19:763 (1990).Google Scholar
  9. 9.
    R. Krauss, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephen,Int. J. Thermophys. 14:951 (1993).Google Scholar
  10. 10.
    S. Hendl, J. Millat, E. Vogel, V. Vesovic, W. A. Akeham, J. Luettmer-Strathmann, J. V. Sengers, and M. J. Assael,Int. J. thermophys,15:1 (1994).Google Scholar
  11. 11.
    V. Vesovic, W. A. Wakeham, J. Luettmer-Strathmann, J. V. Sengers, J. Millat, E. Vogel, and M. J. Assael,Int. J. Thermophys. 15:33 (1994).Google Scholar
  12. 12.
    G. A. Olchowy and J. V. Sengers.Phys. Rev Lett. 61:15 (1988).Google Scholar
  13. 13.
    M. I. Assael, K. Polimatidou. and W. A. Wakeam.Int. J. Thermophys. 15:575 (1994).Google Scholar
  14. 14.
    F. Mayinger,DFG-Forschungsvorhaben, Abschlussbericht (1991).Google Scholar
  15. 15.
    M. Takahashi, C. Yokoyama, and S. Takahashi,J. Chem. Eng. Data 32:98 (1997).Google Scholar
  16. 16.
    M. Takahashi, C. Yokoyama, and S. Takahashi,Nippon Reito Kyokai Ronb. (Trans. JAR) 4:25 (1987).Google Scholar
  17. 17.
    P. S. van der Gulik,Int. J. Thermophys. 16:867 (1995).Google Scholar
  18. 18.
    A. Arnemann and H. Kruse,Proc. Int. Congr. Refrig. (18) (Montréal. 1991 ), p. 379.Google Scholar
  19. 19.
    R. Heide and H. Lippold,Proc. Meet. Int. Inst. Refrig. Comm. B2, E2, D1, D2/3. (Dresden, 1990), p. 237.Google Scholar
  20. 20.
    A. Kumagai and S. Takahashi,Int. J. Thermophys. 12:105 (1991).Google Scholar
  21. 21.
    A. Kumagai and S. Takahashi,Proc. 8th Japan Symp. Thermophys. Prop. (1987). p. 129.Google Scholar
  22. 22.
    I. N. Lapardin,Izv. Vys. Ucheb. Zaved., Neft I Gaz 25:24 + 63 (1982).Google Scholar
  23. 23.
    W. H. Mears, R. F. Stahl, S. R. Orfeo, R. C. Shair, L. F. Kells, W. Thompson, and H. McCann,Ind. Eng. Chem. 47:1449 (1955).Google Scholar
  24. 24.
    K. Nagoka, Y. Yamashita, Y. Tanaka, H. Kubota, and T. Makita,J. Chem Eng. Japan 19:263 (1956).Google Scholar
  25. 25.
    T. W. Phillips and K. P. Murphy,ASHRAE Trans. 76:146 (1970).Google Scholar
  26. 26.
    N. G. Sagaidakova, V. A. Rykov, and T. N. Tsuranoya,Kholod. Tekh. 5:59 (1990).Google Scholar
  27. 27.
    B. Schramm, J. Hauck, and L. Kern,Ber. Bunsenges. Phys. Chem. 96:745 (1992).Google Scholar
  28. 28.
    M. Takahashi, C. Yokoyama, and S. Takahashi,Proc. 7th Japan Symp. Thermophys. Prop. (1986), p. 179.Google Scholar
  29. 29.
    E. Bich, J. Millat, and E. Vogel,Wiss. Z. Wilh.-Pieck-Univ. Rostock 26:5 (1987).Google Scholar
  30. 30.
    A. Lesecke, R. Krauss, K. Stephan, and W. Wagner,J. Phys. Chem. Ref. Data 19:1089 (1990).Google Scholar
  31. 31.
    R. Afshar and S. C. Saxena,Int. J. Thermophys. 1:51 (1980).Google Scholar
  32. 32.
    M. J. Assael, L. Karagiannidis, and W. A. Wakeham,Proc. ASME Winter Ann. Meet. (New Orleans. 1993). p. 1.Google Scholar
  33. 33.
    A. N. Gurova, C. A. MardolCar, and C. A. Nieto de Castro, submitted for publication (1994).Google Scholar
  34. 34.
    U. Hammerschmidt,Int.J. Thermophys. 16:1203 (1995).Google Scholar
  35. 35.
    S. H. Kim, D. S. Kim, M. S. Kim, and S. T. Ro,Int. J. Thermophys. 14:937 (1993).Google Scholar
  36. 36.
    K. Kraft and A. Leipertz,Int. J. Thermophys. 15:791 (1994).Google Scholar
  37. 37.
    B. Kruppa and J. Straub,Int. J. Thermophys. (in press).Google Scholar
  38. 38.
    B. Taxis-Reischl, Thesis (University of Stuttgart, Stuttgart, 1994).Google Scholar
  39. 39.
    O. B. Tsvetkov, Yu. A. Laptev, and A. G. Asambaev,Int. J. Thermophys. (in press).Google Scholar
  40. 40.
    V. Z. Geller, G. V. Zaporozhan, and S. V. Ilyushenko,Prom. Teplotekh. 4:77 (1982).Google Scholar
  41. 41.
    A. J. Grebenkov, Yu. G. Kotelevsky, V. V. Saplitza, O. V. Beljaeva, T. A. Zajatz, and B. D. Timofeev,Proc. Joint Meet. IIR Comm. B1, B2, E1, E2 (Padova, 1994). p. 419.Google Scholar
  42. 42.
    U. Gross, Y. W. Song, and E. Hahne,Fluid Phase Equil. 76:273 (1992).Google Scholar
  43. 43.
    U. Gross, Y. W. Song, and E. Hahne,Int. J. Thermophys. 13:957 (1992).Google Scholar
  44. 44.
    M. Ibreighith, M. Fiebig, A. Leipertz, and G. Wu,Fluid Phase Equil. 80:323 (1992).Google Scholar
  45. 45.
    P. M. Kesselman, V. V. Slyusarev, and I. A. Paramonov.Inzh.-Fiz. Zh. 32:410 (1977).Google Scholar
  46. 46.
    W. Tauseher,Wärme- und Stoffübertragung 21:140 (1986).Google Scholar
  47. 47.
    N. B. Vargaftik, L. P. Filippov, A. A. Tarzimanov, and E. E. Totskii,Handbook of Thermal Conductivity of Liquids and Gases (CRC Press, Boca Raton, FL. 1994).Google Scholar
  48. 48.
    J. Yata, M. Hori, T. Kurahashi, and T. Minamiyama,Fluid Phase Equil. 80:287 (1992).Google Scholar
  49. 49.
    J. M. Yin, J. X. Guo, Z. Y. Zhao, L. C. Tan, and M. Zhao,Fluid Phase Equil. 30:297 (1992).Google Scholar
  50. 50.
    R. Mostert, H. R. van den Berg, P. S. van der Gulik, and J. V. Sengers,J. Chem. Phys. 92:5454 (1990).Google Scholar
  51. 51.
    R. A. Perkins, H. M. Roder, D. G. Friend, and C. A. Nieto de Castro,Phyica A 173:332 (1991).Google Scholar
  52. 52.
    R. A. Perkins, D. G. Friend, H. M. Roder, and C. A. Nieto de Castro,Int. J. Thermophys. 12:965 (1991).Google Scholar
  53. 53.
    B. W. Tiesenga, E. P. Sakonidou, H. R. van den Berg, J. Luettmer-Strathmann, and J. V. Sengers,J. Chem. Phys. 101:6944 (1994).Google Scholar
  54. 54.
    J. Luettmer-Strathmann and J. V. Sengers,High Temp.-High Press. (in press).Google Scholar
  55. 55.
    J. V. Sengers and J. Luettmer-Strathmann, inTransport Properties of Fluids: Their Correlation, Prediction, and Estimation. J. Millat, J. H. Dymond, and C. A. Nieto de Castro. eds. (Cambridge University Press). Chap. 6.Google Scholar
  56. 56.
    J. Luettmer-Strathmann, Ph.D. thesis (Institute for Physical Science and Technology, University of Maryland, College Park, 1994).Google Scholar
  57. 57.
    J. Luettmer-Strathmann, J. V. Sengers, and G. A. Olchowy,J. Chem. Phys. 103:7482 (1995).Google Scholar
  58. 58.
    J. V. Sengers and J. M. H. Levelt Sengers,Annu. Rev. Phys. Chem. 37:189 (1986).Google Scholar
  59. 59.
    R. F. Berg and M. R. Moldover.J. Chem. Phys. 89:3694 (1988):93:1926 (1990).Google Scholar
  60. 60.
    J. C. Nieuwoudt and J. V. Sengers,J. Chem. Phys. 90:457 (1989).Google Scholar
  61. 61.
    H. Hao, Ph. D. thesis (Department of Physics and Astronomy. University of Maryland, College Park, 1991).Google Scholar
  62. 62.
    B. Saager and J. Fischer,Deutscher Kälte- und Klimaverein e.V.,16:213 (1959).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • R. Krauss
    • 1
  • V. C. Weiss
    • 2
    • 3
  • T. A. Edison
    • 2
    • 4
  • J. V. Sengers
    • 2
    • 4
  • K. Stephan
    • 1
  1. 1.Universität StuttgartInstitut für Technische Thermodynamik und Thermische VerlaltrenstechnikStuttgartGermany
  2. 2.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  3. 3.Universität BermenBremenGermany
  4. 4.Department of Chemical Engineering, and Center for Environmental Energy EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations